文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

柔性可穿戴传感器中导电水凝胶的研究进展

Progress of Research on Conductive Hydrogels in Flexible Wearable Sensors.

作者信息

Cao Juan, Wu Bo, Yuan Ping, Liu Yeqi, Hu Cheng

机构信息

School of Fashion and Design Art, Sichuan Normal University, Chengdu 610066, China.

School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.

出版信息

Gels. 2024 Feb 14;10(2):144. doi: 10.3390/gels10020144.


DOI:10.3390/gels10020144
PMID:38391474
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10887588/
Abstract

Conductive hydrogels, characterized by their excellent conductivity and flexibility, have attracted widespread attention and research in the field of flexible wearable sensors. This paper reviews the application progress, related challenges, and future prospects of conductive hydrogels in flexible wearable sensors. Initially, the basic properties and classifications of conductive hydrogels are introduced. Subsequently, this paper discusses in detail the specific applications of conductive hydrogels in different sensor applications, such as motion detection, medical diagnostics, electronic skin, and human-computer interactions. Finally, the application prospects and challenges are summarized. Overall, the exceptional performance and multifunctionality of conductive hydrogels make them one of the most important materials for future wearable technologies. However, further research and innovation are needed to overcome the challenges faced and to realize the wider application of conductive hydrogels in flexible sensors.

摘要

导电水凝胶以其优异的导电性和柔韧性为特征,在柔性可穿戴传感器领域引起了广泛关注和研究。本文综述了导电水凝胶在柔性可穿戴传感器中的应用进展、相关挑战及未来前景。首先,介绍了导电水凝胶的基本性质和分类。随后,详细讨论了导电水凝胶在不同传感器应用中的具体应用,如运动检测、医学诊断、电子皮肤和人机交互。最后,总结了应用前景和挑战。总体而言,导电水凝胶的卓越性能和多功能性使其成为未来可穿戴技术最重要的材料之一。然而,需要进一步的研究和创新来克服面临的挑战,并实现导电水凝胶在柔性传感器中的更广泛应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/192a/10887588/a1f377f549b2/gels-10-00144-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/192a/10887588/7d125b1c03a3/gels-10-00144-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/192a/10887588/1cad314ca1ee/gels-10-00144-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/192a/10887588/329d6f883b18/gels-10-00144-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/192a/10887588/4f2aba922e80/gels-10-00144-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/192a/10887588/71a3e49426b8/gels-10-00144-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/192a/10887588/0229606142a9/gels-10-00144-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/192a/10887588/b4a57497f5c4/gels-10-00144-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/192a/10887588/d79de1d8e390/gels-10-00144-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/192a/10887588/c393ee1954fe/gels-10-00144-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/192a/10887588/a1f377f549b2/gels-10-00144-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/192a/10887588/7d125b1c03a3/gels-10-00144-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/192a/10887588/1cad314ca1ee/gels-10-00144-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/192a/10887588/329d6f883b18/gels-10-00144-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/192a/10887588/4f2aba922e80/gels-10-00144-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/192a/10887588/71a3e49426b8/gels-10-00144-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/192a/10887588/0229606142a9/gels-10-00144-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/192a/10887588/b4a57497f5c4/gels-10-00144-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/192a/10887588/d79de1d8e390/gels-10-00144-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/192a/10887588/c393ee1954fe/gels-10-00144-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/192a/10887588/a1f377f549b2/gels-10-00144-g010.jpg

相似文献

[1]
Progress of Research on Conductive Hydrogels in Flexible Wearable Sensors.

Gels. 2024-2-14

[2]
A Review of Conductive Hydrogel-Based Wearable Temperature Sensors.

Adv Healthc Mater. 2024-10

[3]
Recent Progress in Natural Biopolymers Conductive Hydrogels for Flexible Wearable Sensors and Energy Devices: Materials, Structures, and Performance.

ACS Appl Bio Mater. 2021-1-18

[4]
Recent advances in conductive hydrogels: classifications, properties, and applications.

Chem Soc Rev. 2023-1-25

[5]
Advances in the Preparation of Tough Conductive Hydrogels for Flexible Sensors.

Polymers (Basel). 2023-10-5

[6]
Flexible Self-Repairing Materials for Wearable Sensing Applications: Elastomers and Hydrogels.

Macromol Rapid Commun. 2020-12

[7]
Stretchable and tough conductive hydrogels for flexible pressure and strain sensors.

J Mater Chem B. 2020-4-29

[8]
Flexible conductive silk-PPy hydrogel toward wearable electronic strain sensors.

Biomed Mater. 2022-2-21

[9]
Nanomaterial based PVA nanocomposite hydrogels for biomedical sensing: Advances toward designing the ideal flexible/wearable nanoprobes.

Adv Colloid Interface Sci. 2022-7

[10]
Flexible Hybrid Wearable Sensors for Pressure and Thermal Sensing Based on a Double-Network Hydrogel.

ACS Appl Bio Mater. 2023-11-20

引用本文的文献

[1]
Bio-Inspired Synthesis of Injectable, Self-Healing PAA-Zn-Silk Fibroin-MXene Hydrogel for Multifunctional Wearable Capacitive Strain Sensor.

Gels. 2025-5-21

[2]
Introductory Review of Soft Implantable Bioelectronics Using Conductive and Functional Hydrogels and Hydrogel Nanocomposites.

Gels. 2024-9-25

[3]
Recent Advances in Poly(vinyl alcohol)-Based Hydrogels.

Polymers (Basel). 2024-7-15

本文引用的文献

[1]
Anisotropically Conductive Hydrogels with Directionally Aligned PEDOT:PSS in a PVA Matrix.

ACS Appl Mater Interfaces. 2024-1-24

[2]
Cold-resistant, highly stretchable ionic conductive hydrogels for intelligent motion recognition in winter sports.

Mater Horiz. 2024-3-4

[3]
Multifunctional Conductive Double-Network Hydrogel Sensors for Multiscale Motion Detection and Temperature Monitoring.

ACS Appl Mater Interfaces. 2023-12-27

[4]
High-Performance Hydrogel Sensors Enabled Multimodal and Accurate Human-Machine Interaction System for Active Rehabilitation.

Adv Mater. 2024-3

[5]
Tunable Hydrogel Electronics for Diagnosis of Peripheral Neuropathy.

Adv Mater. 2024-5

[6]
Ultrastretchable E-Skin Based on Conductive Hydrogel Microfibers for Wearable Sensors.

Small. 2024-3

[7]
A multifunctional sensor for real-time monitoring and pro-healing of frostbite wounds.

Acta Biomater. 2023-12

[8]
A nanometallic conductive composite-hydrogel core-shell microneedle skin patch for real-time monitoring of interstitial glucose levels.

Nanoscale. 2023-10-20

[9]
Highly Robust Conductive Organo-Hydrogels with Powerful Sensing Capabilities Under Large Mechanical Stress.

Adv Mater. 2024-2

[10]
Multi-functional conductive hydrogels based on heparin-polydopamine complex reduced graphene oxide for epidermal sensing and chronic wound healing.

J Nanobiotechnology. 2023-9-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索