用于氧提取分数(OEF)映射的多回波复杂定量磁化率映射和定量血氧水平依赖幅度(mcQSM + qBOLD 或 mcQQ)
Multi-Echo Complex Quantitative Susceptibility Mapping and Quantitative Blood Oxygen Level-Dependent Magnitude (mcQSM + qBOLD or mcQQ) for Oxygen Extraction Fraction (OEF) Mapping.
作者信息
Cho Junghun, Zhang Jinwei, Spincemaille Pascal, Zhang Hang, Nguyen Thanh D, Zhang Shun, Gupta Ajay, Wang Yi
机构信息
Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14228, USA.
Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA.
出版信息
Bioengineering (Basel). 2024 Jan 29;11(2):131. doi: 10.3390/bioengineering11020131.
Oxygen extraction fraction (OEF), the fraction of oxygen that tissue extracts from blood, is an essential biomarker used to directly assess tissue viability and function in neurologic disorders. In ischemic stroke, for example, increased OEF can indicate the presence of penumbra-tissue with low perfusion yet intact cellular integrity-making it a primary therapeutic target. However, practical OEF mapping methods are not currently available in clinical settings, owing to the impractical data acquisitions in positron emission tomography (PET) and the limitations of existing MRI techniques. Recently, a novel MRI-based OEF mapping technique, termed QQ, was proposed. It shows high potential for clinical use by utilizing a routine sequence and removing the need for impractical multiple gas inhalations. However, QQ relies on the assumptions of Gaussian noise in susceptibility and multi-echo gradient echo (mGRE) magnitude signals for OEF estimation. This assumption is unreliable in low signal-to-noise ratio (SNR) regions like disease-related lesions, risking inaccurate OEF estimation and potentially impacting clinical decisions. Addressing this, our study presents a novel multi-echo complex QQ (mcQQ) that models realistic Gaussian noise in mGRE complex signals. We implemented mcQQ using a deep learning framework (mcQQ-NET) and compared it with the existing QQ-NET in simulations, ischemic stroke patients, and healthy subjects, using identical training and testing datasets and schemes. In simulations, mcQQ-NET provided more accurate OEF than QQ-NET. In the subacute stroke patients, mcQQ-NET showed a lower average OEF ratio in lesions relative to unaffected contralateral normal tissue than QQ-NET. In the healthy subjects, mcQQ-NET provided uniform OEF maps, similar to QQ-NET, but without unrealistically high OEF outliers in areas of low SNR, such as SNR ≤ 15 (dB). Therefore, mcQQ-NET improves OEF accuracy by more accurately reflecting realistic Gaussian noise in complex mGRE signals. Its enhanced sensitivity to OEF abnormalities, based on more realistic biophysics modeling, suggests that mcQQ-NET has potential for investigating tissue variability in neurologic disorders.
氧摄取分数(OEF),即组织从血液中摄取的氧气分数,是一种重要的生物标志物,用于直接评估神经系统疾病中的组织活力和功能。例如,在缺血性卒中中,OEF升高可表明存在半暗带组织,即灌注低但细胞完整性完好的组织,这使其成为主要治疗靶点。然而,由于正电子发射断层扫描(PET)的数据采集不切实际以及现有磁共振成像(MRI)技术的局限性,目前临床环境中尚无实用的OEF测绘方法。最近,一种基于MRI的新型OEF测绘技术——QQ被提出。它通过利用常规序列并无需进行不切实际的多次气体吸入,显示出很高的临床应用潜力。然而,QQ在估计OEF时依赖于磁化率中的高斯噪声假设以及多回波梯度回波(mGRE)幅度信号。在诸如疾病相关病变等低信噪比(SNR)区域,这一假设并不可靠,存在OEF估计不准确的风险,并可能影响临床决策。针对这一问题,我们的研究提出了一种新型的多回波复QQ(mcQQ),它对mGRE复信号中的实际高斯噪声进行建模。我们使用深度学习框架(mcQQ-NET)实现了mcQQ,并在模拟、缺血性卒中患者和健康受试者中,使用相同的训练和测试数据集及方案,将其与现有的QQ-NET进行比较。在模拟中,mcQQ-NET提供的OEF比QQ-NET更准确。在亚急性卒中患者中,相对于未受影响的对侧正常组织,mcQQ-NET在病变中的平均OEF比值低于QQ-NET。在健康受试者中,mcQQ-NET提供了与QQ-NET相似的均匀OEF图谱,但在低SNR区域(如SNR≤15(dB))没有不切实际的高OEF异常值。因此,mcQQ-NET通过更准确地反映复mGRE信号中的实际高斯噪声来提高OEF准确性。基于更现实的生物物理建模,其对OEF异常的增强敏感性表明,mcQQ-NET在研究神经系统疾病中的组织变异性方面具有潜力。
相似文献
引用本文的文献
J Cereb Blood Flow Metab. 2025-4-12
J Cereb Blood Flow Metab. 2025-4
本文引用的文献
J Cereb Blood Flow Metab. 2023-1
Magn Reson Med. 2020-12
J Magn Reson Imaging. 2020-12
J Cereb Blood Flow Metab. 2019-2-7