Suppr超能文献

基于卷积神经网络的沙画生成

Sand Painting Generation Based on Convolutional Neural Networks.

作者信息

Chang Chin-Chen, Peng Ping-Hao

机构信息

Department of Computer Science and Information Engineering, National United University, Miaoli 36003, Taiwan.

出版信息

J Imaging. 2024 Feb 7;10(2):44. doi: 10.3390/jimaging10020044.

Abstract

Neural style transfer is an algorithm that transfers the style of one image to another image and converts the style of the second image while preserving its content. In this paper, we propose a style transfer approach for sand painting generation based on convolutional neural networks. The proposed approach aims to improve sand painting generation via neural style transfer, which can address the problem of blurred objects. Furthermore, it can reduce background noise caused by neural style transfers. First, we segment the main objects from the content image. Subsequently, we perform close-open filtering operations on the content image to obtain smooth images. Subsequently, we perform Sobel edge detection to process the images and obtain edge maps. Based on these edge maps and the input style image, we perform neural style transfer to generate sand painting images. Finally, we integrate the generated images to obtain the final stylized sand painting image. The results show that the proposed approach yields good visual effects from sand paintings. Moreover, the proposed approach achieves better visual effects for sand painting than the previous method.

摘要

神经风格迁移是一种将一幅图像的风格转移到另一幅图像上,并在保留第二幅图像内容的同时转换其风格的算法。在本文中,我们提出了一种基于卷积神经网络的沙画生成风格迁移方法。所提出的方法旨在通过神经风格迁移改进沙画生成,这可以解决物体模糊的问题。此外,它可以减少神经风格迁移引起的背景噪声。首先,我们从内容图像中分割出主要物体。随后,我们对内容图像执行开闭滤波操作以获得平滑图像。接着,我们执行Sobel边缘检测来处理图像并获得边缘图。基于这些边缘图和输入的风格图像,我们进行神经风格迁移以生成沙画图像。最后,我们整合生成的图像以获得最终的风格化沙画图像。结果表明,所提出的方法从沙画中产生了良好的视觉效果。此外,所提出的方法在沙画方面比先前的方法实现了更好的视觉效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce80/10890083/a420e5924938/jimaging-10-00044-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验