Suppr超能文献

基于自监督结构相似性的卷积神经网络用于心脏扩散张量图像去噪

Self-supervised structural similarity-based convolutional neural network for cardiac diffusion tensor image denoising.

作者信息

Yuan Nannan, Wang Lihui, Ye Chen, Deng Zeyu, Zhang Jian, Zhu Yuemin

机构信息

Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province, State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China.

Univ Lyon, INSA Lyon, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France.

出版信息

Med Phys. 2023 Oct;50(10):6137-6150. doi: 10.1002/mp.16301. Epub 2023 Apr 17.

Abstract

BACKGROUND

Diffusion tensor imaging (DTI) is a promising technique for non-invasively investigating the myocardial fiber structures of human heart. However, low signal-to-noise ratio (SNR) has been a major limit of cardiac DTI to prevent us from detecting myocardium structure accurately. Therefore, it is important to remove the effect of noise on diffusion weighted (DW) images.

PURPOSE

Although the conventional and deep learning-based denoising methods have shown the potential to deal with effectively the noise in DW images, most of them are redundant information dependent or require the noise-free images as golden standard. In addition, the existed DW image denoising methods often suffer from problems of over-smoothing. To address these issues, we propose a self-supervised learning model, structural similarity based convolutional neural network with edge-weighted loss (SSECNN), to remove the noise effectively in cardiac DTI.

METHODS

Considering that the DW images acquired along different diffusion directions have structural similarity, and the noise in these DW images is independent and identically distributed, the structural similarity-based matching algorithm is proposed to search for the most similar DW images. Such similar noisy DW image pairs are then used as the input and target of the denoising network SSECNN, which consists of several convolutional and residual blocks. Through the self-supervised training with these image pairs, the network can restore the clean DW images and retain the correlations between the denoised DW images along different directions. To avoid the over-smoothing problem, we design a novel edge-weighted loss which enables the network to adaptively adjust the loss weights with iterations and therefore to improve the detail preserve ability of the model. To verify the superiority of the proposed method, comparisons with state-of-the-art (SOTA) denoising methods are performed on both synthetic and real acquired DTI datasets.

RESULTS

Experimental results show that SSECNN can effectively reduce the noise in the DW images while preserving detailed texture and edge information and therefore achieve better performance in DTI reconstruction. For synthetic dataset, compared to the SOTA method, the root mean square error (RMSE), peak signal-to-noise ratio (PSNR), and structure similarity index measure (SSIM) between the denoised DW images obtained with SSECNN and noise-free DW images are improved by 6.94%, 1.98%, and 0.76% respectively when the noise level is 10%. As for the acquired cardiac DTI dataset, the SSECNN method could significantly improve SNR and contrast to noise ratio (CNR) of cardiac DW images and achieve more regular helix angle (HA) and transverse angle (TA) maps. The ablation experimental results validate that using the structure similarity-based method to search the similar DW image pairs yield the smallest loss, and with the help of the edge-weighted loss, the denoised DW images and diffusion metric maps can preserve more details.

CONCLUSIONS

The proposed SSECNN method can fully explore the similarity between the DW images along different diffusion directions. Using such similarity and an edge-weighted loss enable us to denoise cardiac DTI effectively in a self-supervised manner. Our method can overcome the redundancy information dependence and over-smoothing problem of the SOTA methods.

摘要

背景

扩散张量成像(DTI)是一种很有前景的用于无创研究人体心脏心肌纤维结构的技术。然而,低信噪比(SNR)一直是心脏DTI的主要限制,妨碍我们准确检测心肌结构。因此,去除噪声对扩散加权(DW)图像的影响很重要。

目的

尽管传统的和基于深度学习的去噪方法已显示出有效处理DW图像中噪声的潜力,但它们大多依赖冗余信息或需要无噪声图像作为金标准。此外,现有的DW图像去噪方法常常存在过度平滑的问题。为解决这些问题,我们提出一种自监督学习模型,即基于结构相似性的带边缘加权损失的卷积神经网络(SSECNN),以有效去除心脏DTI中的噪声。

方法

考虑到沿不同扩散方向采集的DW图像具有结构相似性,且这些DW图像中的噪声是独立同分布的,提出基于结构相似性的匹配算法来搜索最相似的DW图像。然后将这种相似的含噪DW图像对用作去噪网络SSECNN的输入和目标,该网络由几个卷积块和残差块组成。通过使用这些图像对进行自监督训练,网络可以恢复干净的DW图像,并保留去噪后的DW图像沿不同方向之间的相关性。为避免过度平滑问题,我们设计了一种新颖的边缘加权损失,使网络能够随着迭代自适应调整损失权重,从而提高模型的细节保留能力。为验证所提方法的优越性,在合成和实际采集的DTI数据集上与最先进的(SOTA)去噪方法进行了比较。

结果

实验结果表明,SSECNN可以有效降低DW图像中的噪声,同时保留详细的纹理和边缘信息,因此在DTI重建中表现更好。对于合成数据集,与SOTA方法相比,当噪声水平为10%时,使用SSECNN获得的去噪DW图像与无噪声DW图像之间的均方根误差(RMSE)、峰值信噪比(PSNR)和结构相似性指数测量(SSIM)分别提高了6.94%、1.98%和0.76%。对于采集的心脏DTI数据集,SSECNN方法可以显著提高心脏DW图像的SNR和对比噪声比(CNR),并获得更规则的螺旋角(HA)和横向角(TA)图。消融实验结果验证,使用基于结构相似性的方法搜索相似的DW图像对产生的损失最小,并且在边缘加权损失的帮助下,去噪后的DW图像和扩散度量图可以保留更多细节。

结论

所提出的SSECNN方法可以充分探索沿不同扩散方向的DW图像之间的相似性。利用这种相似性和边缘加权损失使我们能够以自监督的方式有效去除心脏DTI中的噪声。我们的方法可以克服SOTA方法的冗余信息依赖性和过度平滑问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验