Suppr超能文献

基于最佳和最差位置探索动态引导的改进差分进化算法

Improved Differential Evolution Algorithm Guided by Best and Worst Positions Exploration Dynamics.

作者信息

Kumar Pravesh, Ali Musrrat

机构信息

ASH (Mathematics) Department, REC Bijnor, Chandpur 246725, UP, India.

Department of Basic Sciences, Preparatory Year, King Faisal University, Al Ahsa 31982, Saudi Arabia.

出版信息

Biomimetics (Basel). 2024 Feb 16;9(2):119. doi: 10.3390/biomimetics9020119.

Abstract

The exploration of premium and new locations is regarded as a fundamental function of every evolutionary algorithm. This is achieved using the crossover and mutation stages of the differential evolution (DE) method. A best-and-worst position-guided novel exploration approach for the DE algorithm is provided in this study. The proposed version, known as "Improved DE with Best and Worst positions (IDEBW)", offers a more advantageous alternative for exploring new locations, either proceeding directly towards the best location or evacuating the worst location. The performance of the proposed IDEBW is investigated and compared with other DE variants and meta-heuristics algorithms based on 42 benchmark functions, including 13 classical and 29 non-traditional IEEE CEC-2017 test functions and 3 real-life applications of the IEEE CEC-2011 test suite. The results prove that the proposed approach successfully completes its task and makes the DE algorithm more efficient.

摘要

对优质和新位置的探索被视为每个进化算法的基本功能。这是通过差分进化(DE)方法的交叉和变异阶段来实现的。本研究提出了一种用于DE算法的最佳和最差位置引导的新型探索方法。所提出的版本称为“具有最佳和最差位置的改进DE(IDEBW)”,为探索新位置提供了更具优势的选择,既可以直接朝着最佳位置前进,也可以撤离最差位置。基于42个基准函数,包括13个经典函数和29个非传统的IEEE CEC - 2017测试函数以及IEEE CEC - 2011测试套件的3个实际应用,对所提出的IDEBW的性能进行了研究,并与其他DE变体和元启发式算法进行了比较。结果证明,所提出的方法成功完成了任务,并使DE算法更高效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2db3/10887041/ab6b1c87400f/biomimetics-09-00119-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验