Suppr超能文献

用于全局数值优化的协方差和交叉矩阵引导差分进化

Covariance and crossover matrix guided differential evolution for global numerical optimization.

作者信息

Li YongLi, Feng JinFu, Hu JunHua

机构信息

Institute of Aeronautics and Astronautics Engineering, Air Force Engineering University, Room 1, BaLing Road, Baqiao District, Xi'an City, 710038 China ; Institute of Equipment Engineering, Armed Police Force Engineering University, Xi'an, 710086 China.

Institute of Aeronautics and Astronautics Engineering, Air Force Engineering University, Room 1, BaLing Road, Baqiao District, Xi'an City, 710038 China.

出版信息

Springerplus. 2016 Jul 26;5(1):1176. doi: 10.1186/s40064-016-2838-5. eCollection 2016.

Abstract

Differential evolution (DE) is an efficient and robust evolutionary algorithm and has wide application in various science and engineering fields. DE is sensitive to the selection of mutation and crossover strategies and their associated control parameters. However, the structure and implementation of DEs are becoming more complex because of the diverse mutation and crossover strategies that use distinct parameter settings during the different stages of the evolution. A novel strategy is used in this study to improve the crossover and mutation operations. The crossover matrix, instead of a crossover operator and its control parameter CR, is proposed to implement the function of the crossover operation. Meanwhile, Gaussian distribution centers the best individuals found in each generation based on the proposed covariance matrix, which is generated between the best individual and several better individuals. Improved mutation operator based on the crossover matrix is randomly selected to generate the trial population. This operator is used to generate high-quality solutions to improve the capability of exploitation and enhance the preference of exploration. In addition, the memory population is randomly chosen from previous generation and used to control the search direction in the novel mutation strategy. Accordingly, the diversity of the population is improved. Thus, CCDE, which is a novel efficient and simple DE variant, is presented in this paper. CCDE has been tested on 30 benchmarks and 5 real-world optimization problems from the IEEE Congress on Evolutionary Computation (CEC) 2014 and CEC 2011, respectively. Experimental and statistical results demonstrate the effectiveness of CCDE for global numerical and engineering optimization. CCDE can solve the test benchmark functions and engineering problems more successfully than the other DE variants and algorithms from CEC 2014.

摘要

差分进化(DE)是一种高效且强大的进化算法,在各种科学和工程领域有着广泛应用。DE对变异和交叉策略及其相关控制参数的选择很敏感。然而,由于在进化的不同阶段使用不同参数设置的多样变异和交叉策略,DE的结构和实现正变得越来越复杂。本研究采用了一种新颖的策略来改进交叉和变异操作。提出了交叉矩阵而非交叉算子及其控制参数CR来实现交叉操作的功能。同时,高斯分布基于所提出的协方差矩阵将每一代中找到的最佳个体作为中心,该协方差矩阵是在最佳个体与几个更好的个体之间生成的。基于交叉矩阵改进的变异算子被随机选择以生成试验种群。该算子用于生成高质量的解,以提高开发能力并增强探索偏好。此外,记忆种群从前一代中随机选取,并用于在新颖的变异策略中控制搜索方向。相应地,种群的多样性得到了提高。因此,本文提出了CCDE,它是一种新颖、高效且简单的DE变体。CCDE已分别在来自2014年IEEE进化计算大会(CEC)和2011年CEC的30个基准测试函数以及5个实际优化问题上进行了测试。实验和统计结果证明了CCDE在全局数值和工程优化方面的有效性。与来自2014年CEC的其他DE变体和算法相比,CCDE能够更成功地解决测试基准函数和工程问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2ca/4960076/6018d8818aff/40064_2016_2838_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验