Lafhel Majda, Cherifi Hocine, Renoust Benjamin, El Hassouni Mohammed
FLSH, LRIT, FS, Mohammed V University in Rabat, Rabat 10090, Morocco.
ICB UMR 6303 CNRS, University of Burgundy, 21000 Dijon, France.
Entropy (Basel). 2024 Feb 8;26(2):149. doi: 10.3390/e26020149.
Graph distance measures have emerged as an effective tool for evaluating the similarity or dissimilarity between graphs. Recently, there has been a growing trend in the application of movie networks to analyze and understand movie stories. Previous studies focused on computing the distance between individual characters in narratives and identifying the most important ones. Unlike previous techniques, which often relied on representing movie stories through single-layer networks based on characters or keywords, a new multilayer network model was developed to allow a more comprehensive representation of movie stories, including character, keyword, and location aspects. To assess the similarities among movie stories, we propose a methodology that utilizes a multilayer network model and layer-to-layer distance measures. We aim to quantify the similarity between movie networks by verifying two aspects: (i) regarding many components of the movie story and (ii) quantifying the distance between their corresponding movie networks. We tend to explore how five graph distance measures reveal the similarity between movie stories in two aspects: (i) finding the order of similarity among movies within the same genre, and (ii) classifying movie stories based on genre. We select movies from various genres: sci-fi, horror, romance, and comedy. We extract movie stories from movie scripts regarding character, keyword, and location entities to perform this. Then, we compute the distance between movie networks using different methods, such as the network portrait divergence, the network Laplacian spectra descriptor (NetLSD), the network embedding as matrix factorization (NetMF), the Laplacian spectra, and D-measure. The study shows the effectiveness of different methods for identifying similarities among various genres and classifying movies across different genres. The results suggest that the efficiency of an approach on a specific network type depends on its capacity to capture the inherent network structure of that type. We propose incorporating the approach into movie recommendation systems.
图距离度量已成为评估图之间相似性或相异性的有效工具。最近,将电影网络应用于分析和理解电影故事的趋势日益增长。以往的研究主要集中在计算叙事中单个角色之间的距离并识别最重要的角色。与以往通常依赖基于角色或关键词的单层网络来表示电影故事的技术不同,一种新的多层网络模型被开发出来,以便更全面地表示电影故事,包括角色、关键词和地点等方面。为了评估电影故事之间的相似性,我们提出了一种利用多层网络模型和层间距离度量的方法。我们旨在通过验证两个方面来量化电影网络之间的相似性:(i)关于电影故事的许多组成部分;(ii)量化它们相应电影网络之间的距离。我们倾向于探索五种图距离度量如何在两个方面揭示电影故事之间的相似性:(i)找出同一类型电影之间的相似顺序;(ii)根据类型对电影故事进行分类。我们从各种类型中选择电影:科幻、恐怖、浪漫和喜剧。我们从电影剧本中提取关于角色、关键词和地点实体的电影故事来进行此项研究。然后,我们使用不同的方法计算电影网络之间的距离,例如网络肖像散度、网络拉普拉斯谱描述符(NetLSD)、作为矩阵分解的网络嵌入(NetMF)、拉普拉斯谱和D-度量。该研究表明了不同方法在识别不同类型之间的相似性以及对不同类型电影进行分类方面的有效性。结果表明,一种方法在特定网络类型上的效率取决于其捕捉该类型固有网络结构的能力。我们建议将该方法纳入电影推荐系统。