Suppr超能文献

使用布尔组合在多层网络中进行高效的社区检测。

Efficient community detection in multilayer networks using boolean compositions.

作者信息

Santra Abhishek, Irany Fariba Afrin, Madduri Kamesh, Chakravarthy Sharma, Bhowmick Sanjukta

机构信息

Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX, United States.

Department of Computer Science and Engineering, University of North Texas, Denton, TX, United States.

出版信息

Front Big Data. 2023 Aug 23;6:1144793. doi: 10.3389/fdata.2023.1144793. eCollection 2023.

Abstract

Networks (or graphs) are used to model the dyadic relations between entities in complex systems. Analyzing the properties of the networks reveal important characteristics of the underlying system. However, in many disciplines, including social sciences, bioinformatics, and technological systems, multiple relations exist between entities. In such cases, a simple graph is not sufficient to model these multiple relations, and a multilayer network is a more appropriate model. In this paper, we explore community detection in multilayer networks. Specifically, we propose a novel for efficiently combining the communities in the different layers using the Boolean primitives AND, OR, and NOT. Our proposed method, network decoupling, is based on analyzing the communities in each network layer individually and then aggregating the analysis results. We (i) describe our network decoupling algorithms for finding communities, (ii) present how network decoupling can be used to express different types of communities in multilayer networks, and (iii) demonstrate the effectiveness of using network decoupling for detecting communities in real-world and synthetic data sets. Compared to other algorithms for detecting communities in multilayer networks, our proposed network decoupling method requires significantly lower computation time while producing results of high accuracy. Based on these results, we anticipate that our proposed network decoupling technique will enable a more detailed analysis of multilayer networks in an efficient manner.

摘要

网络(或图)用于对复杂系统中实体之间的二元关系进行建模。分析网络的属性可以揭示底层系统的重要特征。然而,在包括社会科学、生物信息学和技术系统在内的许多学科中,实体之间存在多种关系。在这种情况下,简单的图不足以对这些多种关系进行建模,多层网络是更合适的模型。在本文中,我们探索多层网络中的社区检测。具体来说,我们提出了一种新颖的方法,使用布尔原语 AND、OR 和 NOT 有效地组合不同层中的社区。我们提出的方法,即网络解耦,基于分别分析每个网络层中的社区,然后汇总分析结果。我们(i)描述了用于寻找社区的网络解耦算法,(ii)展示了网络解耦如何用于表示多层网络中不同类型的社区,以及(iii)证明了使用网络解耦在真实世界和合成数据集中检测社区的有效性。与其他用于检测多层网络中社区的算法相比,我们提出的网络解耦方法在产生高精度结果的同时,所需的计算时间显著更低。基于这些结果,我们预计我们提出的网络解耦技术将能够以高效的方式对多层网络进行更详细的分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89e4/10481956/e1d5db7997ab/fdata-06-1144793-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验