Suppr超能文献

基于控制插补法的纵向研究中缺失数据的多重稳健估计量

Multiply robust estimators in longitudinal studies with missing data under control-based imputation.

作者信息

Liu Siyi, Yang Shu, Zhang Yilong, Liu Guanghan Frank

机构信息

Department of Statistics, North Carolina State University, Raleigh, NC 27607, United States.

Merck & Co., Inc., Kenilworth, NJ 07033, United States.

出版信息

Biometrics. 2024 Jan 29;80(1). doi: 10.1093/biomtc/ujad036.

Abstract

Longitudinal studies are often subject to missing data. The recent guidance from regulatory agencies, such as the ICH E9(R1) addendum addresses the importance of defining a treatment effect estimand with the consideration of intercurrent events. Jump-to-reference (J2R) is one classical control-based scenario for the treatment effect evaluation, where the participants in the treatment group after intercurrent events are assumed to have the same disease progress as those with identical covariates in the control group. We establish new estimators to assess the average treatment effect based on a proposed potential outcomes framework under J2R. Various identification formulas are constructed, motivating estimators that rely on different parts of the observed data distribution. Moreover, we obtain a novel estimator inspired by the efficient influence function, with multiple robustness in the sense that it achieves n1/2-consistency if any pairs of multiple nuisance functions are correctly specified, or if the nuisance functions converge at a rate not slower than n-1/4 when using flexible modeling approaches. The finite-sample performance of the proposed estimators is validated in simulation studies and an antidepressant clinical trial.

摘要

纵向研究常常会遇到数据缺失的情况。监管机构近期发布的指南,如国际人用药品注册技术协调会(ICH)E9(R1)增编,阐述了在考虑并发事件的情况下定义治疗效果估计量的重要性。跳转到参照组(J2R)是治疗效果评估中一种基于对照的经典场景,在这种场景下,并发事件发生后治疗组中的参与者被假定与对照组中具有相同协变量的参与者具有相同的疾病进展。我们基于J2R下提出的潜在结果框架建立了新的估计量,以评估平均治疗效果。构建了各种识别公式,从而激发了依赖于观测数据分布不同部分的估计量。此外,我们得到了一个受有效影响函数启发的新估计量,它具有多重稳健性,即如果多个干扰函数中的任意一对被正确设定,或者在使用灵活建模方法时干扰函数以不慢于n^(-1/4)的速率收敛,那么它能实现n^(1/2) - 一致性。在模拟研究和一项抗抑郁药物临床试验中验证了所提出估计量的有限样本性能。

相似文献

2
3
Double Robust Efficient Estimators of Longitudinal Treatment Effects: Comparative Performance in Simulations and a Case Study.
Int J Biostat. 2019 Feb 26;15(2):/j/ijb.2019.15.issue-2/ijb-2017-0054/ijb-2017-0054.xml. doi: 10.1515/ijb-2017-0054.
4
Sensitivity analyses in longitudinal clinical trials via distributional imputation.
Stat Methods Med Res. 2023 Jan;32(1):181-194. doi: 10.1177/09622802221135251. Epub 2022 Nov 6.
5
Aligning Estimators With Estimands in Clinical Trials: Putting the ICH E9(R1) Guidelines Into Practice.
Ther Innov Regul Sci. 2020 Mar;54(2):353-364. doi: 10.1007/s43441-019-00063-9. Epub 2020 Jan 6.
6
Estimating the treatment effect for adherers using multiple imputation.
Pharm Stat. 2022 May;21(3):525-534. doi: 10.1002/pst.2184. Epub 2021 Dec 19.
9
Incorporating estimands into clinical trial statistical analysis plans.
Clin Trials. 2022 Jun;19(3):285-291. doi: 10.1177/17407745221080463. Epub 2022 Mar 8.
10
Doubly robust estimation in missing data and causal inference models.
Biometrics. 2005 Dec;61(4):962-73. doi: 10.1111/j.1541-0420.2005.00377.x.

本文引用的文献

1
Robust analyzes for longitudinal clinical trials with missing and non-normal continuous outcomes.
Stat Theory Relat Fields. 2024;8(1):1-14. doi: 10.1080/24754269.2023.2261351. Epub 2023 Sep 26.
2
Sensitivity analyses in longitudinal clinical trials via distributional imputation.
Stat Methods Med Res. 2023 Jan;32(1):181-194. doi: 10.1177/09622802221135251. Epub 2022 Nov 6.
3
Improving trial generalizability using observational studies.
Biometrics. 2023 Jun;79(2):1213-1225. doi: 10.1111/biom.13609. Epub 2022 Jan 11.
4
SMIM: A unified framework of survival sensitivity analysis using multiple imputation and martingale.
Biometrics. 2023 Mar;79(1):230-240. doi: 10.1111/biom.13555. Epub 2021 Sep 20.
5
A review of the use of controlled multiple imputation in randomised controlled trials with missing outcome data.
BMC Med Res Methodol. 2021 Apr 15;21(1):72. doi: 10.1186/s12874-021-01261-6.
8
Improving Study Conduct and Data Quality in Clinical Trials of Chronic Pain Treatments: IMMPACT Recommendations.
J Pain. 2020 Sep-Oct;21(9-10):931-942. doi: 10.1016/j.jpain.2019.12.003. Epub 2019 Dec 13.
9
A causal modelling framework for reference-based imputation and tipping point analysis in clinical trials with quantitative outcome.
J Biopharm Stat. 2020 Mar;30(2):334-350. doi: 10.1080/10543406.2019.1684308. Epub 2019 Nov 12.
10
Recent Developments in the Prevention and Treatment of Missing Data.
Ther Innov Regul Sci. 2014 Jan;48(1):68-80. doi: 10.1177/2168479013501310.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验