Liu Siyi, Yang Shu, Zhang Yilong, Liu Guanghan Frank
Department of Statistics, North Carolina State University, Raleigh, NC 27607, United States.
Merck & Co., Inc., Kenilworth, NJ 07033, United States.
Biometrics. 2024 Jan 29;80(1). doi: 10.1093/biomtc/ujad036.
Longitudinal studies are often subject to missing data. The recent guidance from regulatory agencies, such as the ICH E9(R1) addendum addresses the importance of defining a treatment effect estimand with the consideration of intercurrent events. Jump-to-reference (J2R) is one classical control-based scenario for the treatment effect evaluation, where the participants in the treatment group after intercurrent events are assumed to have the same disease progress as those with identical covariates in the control group. We establish new estimators to assess the average treatment effect based on a proposed potential outcomes framework under J2R. Various identification formulas are constructed, motivating estimators that rely on different parts of the observed data distribution. Moreover, we obtain a novel estimator inspired by the efficient influence function, with multiple robustness in the sense that it achieves n1/2-consistency if any pairs of multiple nuisance functions are correctly specified, or if the nuisance functions converge at a rate not slower than n-1/4 when using flexible modeling approaches. The finite-sample performance of the proposed estimators is validated in simulation studies and an antidepressant clinical trial.
纵向研究常常会遇到数据缺失的情况。监管机构近期发布的指南,如国际人用药品注册技术协调会(ICH)E9(R1)增编,阐述了在考虑并发事件的情况下定义治疗效果估计量的重要性。跳转到参照组(J2R)是治疗效果评估中一种基于对照的经典场景,在这种场景下,并发事件发生后治疗组中的参与者被假定与对照组中具有相同协变量的参与者具有相同的疾病进展。我们基于J2R下提出的潜在结果框架建立了新的估计量,以评估平均治疗效果。构建了各种识别公式,从而激发了依赖于观测数据分布不同部分的估计量。此外,我们得到了一个受有效影响函数启发的新估计量,它具有多重稳健性,即如果多个干扰函数中的任意一对被正确设定,或者在使用灵活建模方法时干扰函数以不慢于n^(-1/4)的速率收敛,那么它能实现n^(1/2) - 一致性。在模拟研究和一项抗抑郁药物临床试验中验证了所提出估计量的有限样本性能。