Suppr超能文献

SMIM:使用多重插补和鞅方法的生存敏感性分析的统一框架。

SMIM: A unified framework of survival sensitivity analysis using multiple imputation and martingale.

机构信息

Department of Statistics, North Carolina State University, Raleigh, North Carolina, USA.

Merck & Co., Inc., Kenilworth, New Jersey, USA.

出版信息

Biometrics. 2023 Mar;79(1):230-240. doi: 10.1111/biom.13555. Epub 2021 Sep 20.

Abstract

Censored survival data are common in clinical trial studies. We propose a unified framework for sensitivity analysis to censoring at random in survival data using multiple imputation and martingale, called SMIM. The proposed framework adopts the δ-adjusted and control-based models, indexed by the sensitivity parameter, entailing censoring at random and a wide collection of censoring not at random assumptions. Also, it targets a broad class of treatment effect estimands defined as functionals of treatment-specific survival functions, taking into account missing data due to censoring. Multiple imputation facilitates the use of simple full-sample estimation; however, the standard Rubin's combining rule may overestimate the variance for inference in the sensitivity analysis framework. We decompose the multiple imputation estimator into a martingale series based on the sequential construction of the estimator and propose the wild bootstrap inference by resampling the martingale series. The new bootstrap inference has a theoretical guarantee for consistency and is computationally efficient compared to the nonparametric bootstrap counterpart. We evaluate the finite-sample performance of the proposed SMIM through simulation and an application on an HIV clinical trial.

摘要

删失生存数据在临床试验研究中很常见。我们提出了一种使用多重插补和鞅的随机删失敏感性分析的统一框架,称为 SMIM。所提出的框架采用了 δ 调整和基于控制的模型,由敏感性参数索引,涉及随机删失和广泛的非随机删失假设。此外,它针对由于删失而导致的缺失数据,针对作为治疗特异性生存函数的函数的广泛的治疗效果估计量。多重插补便于使用简单的全样本估计;然而,标准的鲁宾合并规则可能会高估敏感性分析框架中推断的方差。我们基于估计量的顺序构建将多重插补估计量分解为鞅级数,并通过对鞅级数进行重采样提出了野 Bootstrap 推断。新的自举推断在理论上保证了一致性,并且与非参数自举相比具有计算效率。我们通过模拟和对 HIV 临床试验的应用来评估所提出的 SMIM 的有限样本性能。

相似文献

1
SMIM: A unified framework of survival sensitivity analysis using multiple imputation and martingale.
Biometrics. 2023 Mar;79(1):230-240. doi: 10.1111/biom.13555. Epub 2021 Sep 20.
2
On the multiple imputation variance estimator for control-based and delta-adjusted pattern mixture models.
Biometrics. 2017 Dec;73(4):1379-1387. doi: 10.1111/biom.12702. Epub 2017 Apr 13.
3
Sensitivity analyses in longitudinal clinical trials via distributional imputation.
Stat Methods Med Res. 2023 Jan;32(1):181-194. doi: 10.1177/09622802221135251. Epub 2022 Nov 6.
4
Distributional imputation for the analysis of censored recurrent events.
Stat Med. 2024 Jun 15;43(13):2622-2640. doi: 10.1002/sim.10087. Epub 2024 Apr 29.
5
Reference-based sensitivity analysis for time-to-event data.
Pharm Stat. 2019 Nov;18(6):645-658. doi: 10.1002/pst.1954. Epub 2019 Jul 15.
6
Comparison of imputation variance estimators.
Stat Methods Med Res. 2016 Dec;25(6):2541-2557. doi: 10.1177/0962280214526216. Epub 2014 Mar 28.
7
Asymptotic theory and inference of predictive mean matching imputation using a superpopulation model framework.
Scand Stat Theory Appl. 2020 Sep;47(3):839-861. doi: 10.1111/sjos.12429. Epub 2019 Nov 8.
8
Regression multiple imputation for missing data analysis.
Stat Methods Med Res. 2020 Sep;29(9):2647-2664. doi: 10.1177/0962280220908613. Epub 2020 Mar 4.
9
Standard and reference-based conditional mean imputation.
Pharm Stat. 2022 Nov;21(6):1246-1257. doi: 10.1002/pst.2234. Epub 2022 May 19.
10
Bootstrap inference for multiple imputation under uncongeniality and misspecification.
Stat Methods Med Res. 2020 Dec;29(12):3533-3546. doi: 10.1177/0962280220932189. Epub 2020 Jun 30.

引用本文的文献

1
Statistical methods for clinical trials interrupted by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) pandemic: A review.
Stat Methods Med Res. 2024 Nov;33(11-12):2131-2143. doi: 10.1177/09622802241288350. Epub 2024 Oct 30.
2
Robust analyzes for longitudinal clinical trials with missing and non-normal continuous outcomes.
Stat Theory Relat Fields. 2024;8(1):1-14. doi: 10.1080/24754269.2023.2261351. Epub 2023 Sep 26.
3
Propensity score matching for estimating a marginal hazard ratio.
Stat Med. 2024 Jun 30;43(14):2783-2810. doi: 10.1002/sim.10103. Epub 2024 May 5.
4
Distributional imputation for the analysis of censored recurrent events.
Stat Med. 2024 Jun 15;43(13):2622-2640. doi: 10.1002/sim.10087. Epub 2024 Apr 29.
8
Sensitivity analyses in longitudinal clinical trials via distributional imputation.
Stat Methods Med Res. 2023 Jan;32(1):181-194. doi: 10.1177/09622802221135251. Epub 2022 Nov 6.

本文引用的文献

1
Reference-based sensitivity analysis for time-to-event data.
Pharm Stat. 2019 Nov;18(6):645-658. doi: 10.1002/pst.1954. Epub 2019 Jul 15.
2
Information-anchored sensitivity analysis: theory and application.
J R Stat Soc Ser A Stat Soc. 2019 Feb;182(2):623-645. doi: 10.1111/rssa.12423. Epub 2018 Nov 16.
3
Control-based imputation for sensitivity analyses in informative censoring for recurrent event data.
Pharm Stat. 2017 Nov;16(6):424-432. doi: 10.1002/pst.1821. Epub 2017 Aug 22.
4
Sensitivity to censored-at-random assumption in the analysis of time-to-event endpoints.
Pharm Stat. 2016 May;15(3):216-29. doi: 10.1002/pst.1738. Epub 2016 Mar 21.
5
On analysis of longitudinal clinical trials with missing data using reference-based imputation.
J Biopharm Stat. 2016;26(5):924-36. doi: 10.1080/10543406.2015.1094810. Epub 2015 Sep 29.
6
A Simple Method for Estimating Interactions between a Treatment and a Large Number of Covariates.
J Am Stat Assoc. 2014 Oct;109(508):1517-1532. doi: 10.1080/01621459.2014.951443.
7
Relaxing the independent censoring assumption in the Cox proportional hazards model using multiple imputation.
Stat Med. 2014 Nov 30;33(27):4681-94. doi: 10.1002/sim.6274. Epub 2014 Jul 25.
10
Missing data in clinical trials: from clinical assumptions to statistical analysis using pattern mixture models.
Pharm Stat. 2013 Nov-Dec;12(6):337-47. doi: 10.1002/pst.1549. Epub 2013 Jan 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验