Suppr超能文献

机器学习衍生的基线视野模式可预测青光眼在高眼压治疗研究中的发病。

Machine Learning-Derived Baseline Visual Field Patterns Predict Future Glaucoma Onset in the Ocular Hypertension Treatment Study.

机构信息

Department of Ophthalmology, Columbia University Medical Center, New York, New York, United States.

Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts, United States.

出版信息

Invest Ophthalmol Vis Sci. 2024 Feb 1;65(2):35. doi: 10.1167/iovs.65.2.35.

Abstract

PURPOSE

The Ocular Hypertension Treatment Study (OHTS) identified risk factors for primary open-angle glaucoma (POAG) in patients with ocular hypertension, including pattern standard deviation (PSD). Archetypal analysis, an unsupervised machine learning method, may offer a more interpretable approach to risk stratification by identifying patterns in baseline visual fields (VFs).

METHODS

There were 3272 eyes available in the OHTS. Archetypal analysis was applied using 24-2 baseline VFs, and model selection was performed with cross-validation. Decomposition coefficients for archetypes (ATs) were calculated. A penalized Cox proportional hazards model was implemented to select discriminative ATs. The AT model was compared to the OHTS model. Associations were identified between ATs with both POAG onset and VF progression, defined by mean deviation change per year.

RESULTS

We selected 8494 baseline VFs. Optimal AT count was 19. The highest prevalence ATs were AT9, AT11, and AT7. The AT-based prediction model had a C-index of 0.75 for POAG onset. Multivariable models demonstrated that a one-interquartile range increase in the AT5 (hazard ratio [HR] = 1.14; 95% confidence interval [CI], 1.04-1.25), AT8 (HR = 1.22; 95% CI, 1.09-1.37), AT15 (HR = 1.26; 95% CI, 1.12-1.41), and AT17 (HR = 1.17; 95% CI, 1.03-1.31) coefficients conferred increased risk of POAG onset. AT5, AT10, and AT14 were significantly associated with rapid VF progression. In a subgroup analysis by high-risk ATs (>95th percentile or <75th percentile coefficients), PSD lost significance as a predictor of POAG in the low-risk group.

CONCLUSIONS

Baseline VFs, prior to detectable glaucomatous damage, contain occult patterns representing early changes that may increase the risk of POAG onset and VF progression in patients with ocular hypertension. The relationship between PSD and POAG is modified by the presence of high-risk patterns at baseline. An AT-based prediction model for POAG may provide more interpretable glaucoma-specific information in a clinical setting.

摘要

目的

眼高血压治疗研究(OHTS)确定了眼高血压患者原发性开角型青光眼(POAG)的风险因素,包括模式标准差(PSD)。原型分析是一种无监督机器学习方法,通过识别基线视野(VF)中的模式,可能提供一种更具解释性的风险分层方法。

方法

OHTS 中有 3272 只眼。使用 24-2 基线 VF 进行原型分析,交叉验证进行模型选择。计算原型(AT)的分解系数。实施惩罚 Cox 比例风险模型以选择有区别的 AT。将 AT 模型与 OHTS 模型进行比较。根据每年平均偏差变化,确定与 POAG 发病和 VF 进展相关的 AT 之间的关联。

结果

我们选择了 8494 个基线 VF。最佳 AT 计数为 19。最常见的 AT 是 AT9、AT11 和 AT7。基于 AT 的预测模型对 POAG 发病的 C 指数为 0.75。多变量模型表明,AT5(风险比 [HR] = 1.14;95%置信区间 [CI],1.04-1.25)、AT8(HR = 1.22;95% CI,1.09-1.37)、AT15(HR = 1.26;95% CI,1.12-1.41)和 AT17(HR = 1.17;95% CI,1.03-1.31)的四分位距增加一个单位,POAG 发病风险增加。AT5、AT10 和 AT14 与快速 VF 进展显著相关。在高风险 ATs(>95 百分位数或<75 百分位数系数)亚组分析中,在低风险组中,PSD 作为 POAG 的预测因子失去了意义。

结论

在可检测到青光眼损伤之前,基线 VF 中包含潜在的模式,代表可能增加眼高血压患者 POAG 发病和 VF 进展风险的早期变化。在基线时存在高风险模式的情况下,PSD 与 POAG 的关系发生改变。基于 AT 的 POAG 预测模型可能在临床环境中提供更具解释性的青光眼特定信息。

相似文献

2
Visual Field Progression in the Ocular Hypertension Treatment Study.
Am J Ophthalmol. 2025 Mar;271:360-370. doi: 10.1016/j.ajo.2024.11.017. Epub 2024 Dec 6.
3
Clinical Correlates of Computationally Derived Visual Field Defect Archetypes in Patients from a Glaucoma Clinic.
Curr Eye Res. 2017 Apr;42(4):568-574. doi: 10.1080/02713683.2016.1205630. Epub 2016 Aug 5.
4
Validated prediction model for the development of primary open-angle glaucoma in individuals with ocular hypertension.
Ophthalmology. 2007 Jan;114(1):10-9. doi: 10.1016/j.ophtha.2006.08.031. Epub 2006 Nov 7.
5
Asymmetries and visual field summaries as predictors of glaucoma in the ocular hypertension treatment study.
Invest Ophthalmol Vis Sci. 2006 Sep;47(9):3896-903. doi: 10.1167/iovs.05-0469.
6
The rate of visual field change in the ocular hypertension treatment study.
Invest Ophthalmol Vis Sci. 2012 Jan 25;53(1):224-7. doi: 10.1167/iovs.10-7117.
7
Quality of Life and Primary Open-Angle Glaucoma in the Ocular Hypertension Treatment Study.
JAMA Ophthalmol. 2024 Oct 1;142(10):935-942. doi: 10.1001/jamaophthalmol.2024.3282.
8
Detecting Glaucoma in the Ocular Hypertension Study Using Deep Learning.
JAMA Ophthalmol. 2022 Apr 1;140(4):383-391. doi: 10.1001/jamaophthalmol.2022.0244.
9
Machine-Identified Patterns of Visual Field Loss and an Association with Rapid Progression in the Ocular Hypertension Treatment Study.
Ophthalmology. 2022 Dec;129(12):1402-1411. doi: 10.1016/j.ophtha.2022.07.001. Epub 2022 Jul 8.
10
Long-term intraocular pressure fluctuations and risk of conversion from ocular hypertension to glaucoma.
Ophthalmology. 2008 Jun;115(6):934-40. doi: 10.1016/j.ophtha.2007.08.012. Epub 2007 Oct 15.

引用本文的文献

1
Understanding Glaucoma: Why it Remains a Leading Cause of Blindness Worldwide.
Klin Monbl Augenheilkd. 2025 Jul;242(7):712-717. doi: 10.1055/a-2617-1575. Epub 2025 Jul 24.
2
Application of artificial intelligence in glaucoma care: An updated review.
Taiwan J Ophthalmol. 2024 Sep 13;14(3):340-351. doi: 10.4103/tjo.TJO-D-24-00044. eCollection 2024 Jul-Sep.

本文引用的文献

1
Machine-Identified Patterns of Visual Field Loss and an Association with Rapid Progression in the Ocular Hypertension Treatment Study.
Ophthalmology. 2022 Dec;129(12):1402-1411. doi: 10.1016/j.ophtha.2022.07.001. Epub 2022 Jul 8.
2
Patterns of Visual Field Loss in Early, Moderate, and Severe Stages of Open Angle Glaucoma.
J Glaucoma. 2022 Jul 1;31(7):609-613. doi: 10.1097/IJG.0000000000001986. Epub 2022 Jan 12.
3
Learning Extremal Representations with Deep Archetypal Analysis.
Int J Comput Vis. 2021;129(4):805-820. doi: 10.1007/s11263-020-01390-3. Epub 2020 Dec 23.
4
Development and Comparison of Machine Learning Algorithms to Determine Visual Field Progression.
Transl Vis Sci Technol. 2021 Jun 1;10(7):27. doi: 10.1167/tvst.10.7.27.
5
Artificial Intelligence Classification of Central Visual Field Patterns in Glaucoma.
Ophthalmology. 2020 Jun;127(6):731-738. doi: 10.1016/j.ophtha.2019.12.004. Epub 2019 Dec 12.
6
An Artificial Intelligence Approach to Detect Visual Field Progression in Glaucoma Based on Spatial Pattern Analysis.
Invest Ophthalmol Vis Sci. 2019 Jan 2;60(1):365-375. doi: 10.1167/iovs.18-25568.
7
Rates of Visual Field Loss in Primary Open-Angle Glaucoma and Primary Angle-Closure Glaucoma: Asymmetric Patterns.
Invest Ophthalmol Vis Sci. 2018 Dec 3;59(15):5717-5725. doi: 10.1167/iovs.18-25140.
8
Time-dependent ROC curve analysis in medical research: current methods and applications.
BMC Med Res Methodol. 2017 Apr 7;17(1):53. doi: 10.1186/s12874-017-0332-6.
10
Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent.
J Stat Softw. 2011 Mar;39(5):1-13. doi: 10.18637/jss.v039.i05.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验