Tsamopoulos Alexandros J, Wang Zhen-Gang
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.
ACS Macro Lett. 2024 Mar 19;13(3):322-327. doi: 10.1021/acsmacrolett.3c00757. Epub 2024 Feb 23.
We construct a coarse-grained molecular dynamics model based on poly(ethylene oxide) and lithium bis(trifluoromethane)sulfonimide salt to examine the combined effects of temperature and salt concentration on the transport properties. Salt doping notably slows the dynamics of polymer chains and reduces ion diffusivity, resulting in a glass transition temperature increase proportional to the salt concentration. The polymer diffusion is shown to be well represented by a modified Vogel-Fulcher-Tamman (M-VFT) equation that accounts for both the temperature and salt concentration dependence. Furthermore, we find that, at any temperature, the concentration dependence of the conductivity is well described by the product of its infinite dilution value and a correction factor accounting for the reduced segmental mobility with increasing salt concentration. These results highlight the important role of polymer segmental mobility in the salt concentration dependence of ion conductivity for temperatures near and above the glass transition.
我们基于聚环氧乙烷和双(三氟甲烷)磺酰亚胺锂盐构建了一个粗粒度分子动力学模型,以研究温度和盐浓度对传输性质的综合影响。盐掺杂显著减缓了聚合物链的动力学并降低了离子扩散率,导致玻璃化转变温度随盐浓度成比例增加。聚合物扩散由修正的Vogel-Fulcher-Tamman(M-VFT)方程很好地描述,该方程考虑了温度和盐浓度依赖性。此外,我们发现,在任何温度下,电导率的浓度依赖性都可以通过其无限稀释值与一个校正因子的乘积很好地描述,该校正因子考虑了随着盐浓度增加链段迁移率降低的情况。这些结果突出了聚合物链段迁移率在玻璃化转变附近及以上温度下离子电导率的盐浓度依赖性中的重要作用。