Wheatle Bill K, Lynd Nathaniel A, Ganesan Venkat
McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, United States.
ACS Macro Lett. 2018 Oct 16;7(10):1149-1154. doi: 10.1021/acsmacrolett.8b00594. Epub 2018 Sep 10.
In this work, we use computer simulations to demonstrate that there may be limits to which polymer polarity alone can be used to influence the ionic conductivity of salt-doped polymer electrolytes. Specifically, we use coarse-grained molecular dynamics simulations to probe the effect of the polarity of the polymer electrolyte upon ion mobilities and conductivities of dissolved salts. At low polymer polarities, increasing the polymer dielectric constant reduces ionic aggregation and the resultant correlated ionic motion, and increases the ionic conductivity. At higher polymer polarities, polymer-polymer and polymer-ion interactions slows polymer segmental dynamics, leading to a reduction in the conductivity of the electrolyte. As a consequence, ionic conductivity achieves an optimum at an intermediate polymer polarity.
在这项工作中,我们通过计算机模拟证明,仅靠聚合物极性来影响盐掺杂聚合物电解质的离子电导率可能存在局限性。具体而言,我们使用粗粒度分子动力学模拟来探究聚合物电解质极性对溶解盐的离子迁移率和电导率的影响。在低聚合物极性下,增加聚合物介电常数会减少离子聚集以及由此产生的相关离子运动,并提高离子电导率。在较高聚合物极性下,聚合物 - 聚合物和聚合物 - 离子相互作用会减缓聚合物链段动力学,导致电解质电导率降低。因此,离子电导率在中等聚合物极性下达到最佳值。