Suppr超能文献

早期神经认知障碍认知结果分布的建模:一种模型比较方法。

Modelling the Distribution of Cognitive Outcomes for Early-Stage Neurocognitive Disorders: A Model Comparison Approach.

作者信息

Saffari Seyed Ehsan, Soo See Ann, Mohammadi Raziyeh, Ng Kok Pin, Greene William, Kandiah Negaenderan

机构信息

Centre for Quantitative Medicine, Duke-NUS Medical School, National University of Singapore, Singapore 169857, Singapore.

Department of Neurology, National Neuroscience Institute, Singapore 308433, Singapore.

出版信息

Biomedicines. 2024 Feb 8;12(2):393. doi: 10.3390/biomedicines12020393.

Abstract

: Cognitive assessments for patients with neurocognitive disorders are mostly measured by the Montreal Cognitive Assessment (MoCA) and Visual Cognitive Assessment Test (VCAT) as screening tools. These cognitive scores are usually left-skewed and the results of the association analysis might not be robust. This study aims to study the distribution of the cognitive outcomes and to discuss potential solutions. : In this retrospective cohort study of individuals with subjective cognitive decline or mild cognitive impairment, the inverse-transformed cognitive outcomes are modelled using different statistical distributions. The robustness of the proposed models are checked under different scenarios: with intercept-only, models with covariates, and with and without bootstrapping. : The main results were based on the VCAT score and validated via the MoCA score. The findings suggested that the inverse transformation method improved the modelling the cognitive scores compared to the conventional methods using the original cognitive scores. The association of the baseline characteristics (age, gender, and years of education) and the cognitive outcomes were reported as estimates and 95% confidence intervals. Bootstrap methods improved the estimate precision and the bootstrapped standard errors of the estimates were more robust. Cognitive outcomes were widely analysed using linear regression models with the default normal distribution as a conventional method. We compared the results of our suggested models with the normal distribution under various scenarios. Goodness-of-fit measurements were compared between the proposed models and conventional methods. : The findings support the use of the inverse transformation method to model the cognitive outcomes instead of the original cognitive scores for early-stage neurocognitive disorders where the cognitive outcomes are left-skewed.

摘要

对于患有神经认知障碍的患者,认知评估主要通过蒙特利尔认知评估量表(MoCA)和视觉认知评估测试(VCAT)作为筛查工具来进行。这些认知得分通常呈左偏态分布,关联分析的结果可能并不稳健。本研究旨在探讨认知结果的分布情况并讨论潜在的解决方案。:在这项针对主观认知衰退或轻度认知障碍个体的回顾性队列研究中,使用不同的统计分布对逆变换后的认知结果进行建模。在所提出模型的稳健性在不同情况下进行检验:仅含截距项的模型、含协变量的模型以及有无自抽样法的情况。:主要结果基于VCAT得分,并通过MoCA得分进行验证。研究结果表明,与使用原始认知得分的传统方法相比,逆变换方法在对认知得分进行建模方面有所改进。基线特征(年龄、性别和受教育年限)与认知结果之间的关联以估计值和95%置信区间的形式报告。自抽样法提高了估计精度,估计值的自抽样标准误差更为稳健。作为传统方法,使用默认正态分布的线性回归模型对认知结果进行了广泛分析。我们在各种情况下将所提出模型的结果与正态分布进行了比较。对所提出模型与传统方法之间的拟合优度测量结果进行了比较。:研究结果支持使用逆变换方法对认知结果进行建模,而非使用早期神经认知障碍中呈左偏态分布的原始认知得分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1df7/10886528/07bb1517d3e7/biomedicines-12-00393-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验