Que Ruyue, Lancry Matthieu, Poumellec Bertrand
Institut de Chimie Moléculaire et des Matériaux d'Orsay, Université Paris-Saclay, CNRS, 91405 Orsay, France.
Micromachines (Basel). 2024 Jan 27;15(2):196. doi: 10.3390/mi15020196.
This paper focuses on the critical role of temperature in ultrafast direct laser writing processes, where temperature changes can trigger or exclusively drive certain transformations, such as phase transitions. It is important to consider both the temporal dynamics and spatial temperature distribution for the effective control of material modifications. We present analytical expressions for temperature variations induced by multi-pulse absorption, applicable to pulse durations significantly shorter than nanoseconds within a spherical energy source. The objective is to provide easy-to-use expressions to facilitate engineering tasks. Specifically, the expressions are shown to depend on just two parameters: the initial temperature at the center denoted as and a factor representing the ratio of the pulse period to the diffusion time . We show that temperature, oscillating between and , reaches a steady state and we calculate the least number of pulses required to reach the steady state. The paper defines the occurrence of heat accumulation precisely and elucidates that a temperature increase does not accompany systematically heat accumulation but depends on a set of laser parameters. It also highlights the temporal differences in temperature at the focus compared to areas outside the focus. Furthermore, the study suggests circumstances under which averaging the temperature over the pulse period can provide an even simpler approach. This work is instrumental in comprehending the diverse temperature effects observed in various experiments and in preparing for experimental setup. It also aids in determining whether temperature plays a role in the processes of direct laser writing. Toward the end of the paper, several application examples are provided.
本文聚焦于温度在超快直接激光写入过程中的关键作用,在该过程中,温度变化能够引发或专门驱动某些转变,例如相变。为有效控制材料改性,考虑时间动态和空间温度分布都很重要。我们给出了由多脉冲吸收引起的温度变化的解析表达式,适用于在球形能量源内脉冲持续时间远短于纳秒的情况。目的是提供易于使用的表达式以方便工程任务。具体而言,这些表达式仅依赖于两个参数:中心处的初始温度记为 以及一个因子 ,它表示脉冲周期 与扩散时间 的比值。我们表明,温度在 和 之间振荡,会达到一个稳态,并且我们计算了达到稳态所需的最少脉冲数。本文精确地定义了热积累的发生,并阐明温度升高并非系统地伴随着热积累,而是取决于一组激光参数。它还突出了焦点处与焦点外区域温度的时间差异。此外,该研究指出了在哪些情况下在脉冲周期内对温度进行平均可以提供一种更简单的方法。这项工作有助于理解在各种实验中观察到的不同温度效应,并为实验设置做准备。它还有助于确定温度在直接激光写入过程中是否起作用。在论文结尾,提供了几个应用示例。