Suppr超能文献

骨科和心血管环境下的三维多模态配准:最新技术和临床应用。

Three-Dimensional Multi-Modality Registration for Orthopaedics and Cardiovascular Settings: State-of-the-Art and Clinical Applications.

机构信息

BioCardioLab, Bioengineering Unit, Fondazione Toscana G. Monasterio, 54100 Massa, Italy.

Department of Information Engineering, University of Pisa, 56122 Pisa, Italy.

出版信息

Sensors (Basel). 2024 Feb 7;24(4):1072. doi: 10.3390/s24041072.

Abstract

The multimodal and multidomain registration of medical images have gained increasing recognition in clinical practice as a powerful tool for fusing and leveraging useful information from different imaging techniques and in different medical fields such as cardiology and orthopedics. Image registration could be a challenging process, and it strongly depends on the correct tuning of registration parameters. In this paper, the robustness and accuracy of a landmarks-based approach have been presented for five cardiac multimodal image datasets. The study is based on 3D Slicer software and it is focused on the registration of a computed tomography (CT) and 3D ultrasound time-series of post-operative mitral valve repair. The accuracy of the method, as a function of the number of landmarks used, was performed by analysing root mean square error (RMSE) and fiducial registration error (FRE) metrics. The validation of the number of landmarks resulted in an optimal number of 10 landmarks. The mean RMSE and FRE values were 5.26 ± 3.17 and 2.98 ± 1.68 mm, respectively, showing comparable performances with respect to the literature. The developed registration process was also tested on a CT orthopaedic dataset to assess the possibility of reconstructing the damaged jaw portion for a pre-operative planning setting. Overall, the proposed work shows how 3D Slicer and registration by landmarks can provide a useful environment for multimodal/unimodal registration.

摘要

医学图像的多模态和多领域配准在临床实践中得到了越来越多的认可,它是融合和利用来自不同成像技术和不同医学领域(如心脏病学和骨科)的有用信息的有力工具。图像配准可能是一个具有挑战性的过程,它强烈依赖于正确调整配准参数。本文提出了一种基于特征点的方法,用于五个心脏多模态图像数据集。该研究基于 3D Slicer 软件,专注于术后二尖瓣修复的计算机断层扫描(CT)和 3D 超声时间序列的配准。该方法的准确性(作为使用特征点数的函数)通过分析均方根误差(RMSE)和基准点配准误差(FRE)指标来评估。通过验证特征点数,得到了 10 个特征点的最佳数量。平均 RMSE 和 FRE 值分别为 5.26 ± 3.17mm 和 2.98 ± 1.68mm,与文献相比表现相当。所开发的配准过程还在 CT 骨科数据集上进行了测试,以评估在术前规划环境中重建受损颌骨部分的可能性。总体而言,所提出的工作展示了 3D Slicer 和基于特征点的配准如何为多模态/单模态配准提供有用的环境。

相似文献

2
Multimodal 3D ultrasound and CT in image-guided spinal surgery: public database and new registration algorithms.
Int J Comput Assist Radiol Surg. 2021 Apr;16(4):555-565. doi: 10.1007/s11548-021-02323-2. Epub 2021 Mar 8.
3
Thorax x-ray and CT interventional dataset for nonrigid 2D/3D image registration evaluation.
Med Phys. 2018 Nov;45(11):5343-5351. doi: 10.1002/mp.13174. Epub 2018 Oct 1.
4
Determination of optimal ultrasound planes for the initialisation of image registration during endoscopic ultrasound-guided procedures.
Int J Comput Assist Radiol Surg. 2018 Jun;13(6):875-883. doi: 10.1007/s11548-018-1762-2. Epub 2018 Apr 16.
5
Automatic quantification of multi-modal rigid registration accuracy using feature detectors.
Phys Med Biol. 2016 Jul 21;61(14):5198-214. doi: 10.1088/0031-9155/61/14/5198. Epub 2016 Jun 28.
7
Phantom validation of coregistration of PET and CT for image-guided radiotherapy.
Med Phys. 2004 May;31(5):1083-92. doi: 10.1118/1.1688041.
8
[Study on the method of automatically determining maxillary complex landmarks based on non-rigid registration algorithms].
Zhonghua Kou Qiang Yi Xue Za Zhi. 2023 Jun 9;58(6):554-560. doi: 10.3760/cma.j.cn112144-20230218-00053.
10
Registration of CT to 3D ultrasound using near-field fiducial localization: A feasibility study.
Comput Aided Surg. 2011;16(2):54-70. doi: 10.3109/10929088.2011.556181.

本文引用的文献

1
A review of deep learning-based deformable medical image registration.
Front Oncol. 2022 Dec 7;12:1047215. doi: 10.3389/fonc.2022.1047215. eCollection 2022.
2
Deep Learning-Based Prediction of the 3D Postorthodontic Facial Changes.
J Dent Res. 2022 Oct;101(11):1372-1379. doi: 10.1177/00220345221106676. Epub 2022 Jun 30.
4
The Impact of Machine Learning on 2D/3D Registration for Image-Guided Interventions: A Systematic Review and Perspective.
Front Robot AI. 2021 Aug 30;8:716007. doi: 10.3389/frobt.2021.716007. eCollection 2021.
5
Mitral Valve Translocation: A Novel Operation for the Treatment of Secondary Mitral Regurgitation.
Ann Thorac Surg. 2021 Dec;112(6):1954-1961. doi: 10.1016/j.athoracsur.2021.07.043. Epub 2021 Aug 19.
6
Multimodality-based knee joint modelling method with bone and cartilage structures for total knee arthroplasty.
Int J Med Robot. 2021 Dec;17(6):e2316. doi: 10.1002/rcs.2316. Epub 2021 Aug 7.
7
Machine learning and orthodontics, current trends and the future opportunities: A scoping review.
Am J Orthod Dentofacial Orthop. 2021 Aug;160(2):170-192.e4. doi: 10.1016/j.ajodo.2021.02.013. Epub 2021 Jun 5.
8
Multimodal 3D ultrasound and CT in image-guided spinal surgery: public database and new registration algorithms.
Int J Comput Assist Radiol Surg. 2021 Apr;16(4):555-565. doi: 10.1007/s11548-021-02323-2. Epub 2021 Mar 8.
9
CT-TEE Image Registration for Surgical Navigation of Congenital Heart Disease Based on a Cycle Adversarial Network.
Comput Math Methods Med. 2020 Jul 2;2020:4942121. doi: 10.1155/2020/4942121. eCollection 2020.
10
A Review of Multimodal Medical Image Fusion Techniques.
Comput Math Methods Med. 2020 Apr 23;2020:8279342. doi: 10.1155/2020/8279342. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验