Information Technologies Institute, Centre for Research & Technology Hellas, 6th Km Charilaou-Thermi, 57001 Thessaloniki, Greece.
Department of Neurology I, Medical School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
Sensors (Basel). 2024 Feb 8;24(4):1107. doi: 10.3390/s24041107.
Activities of daily living (ADLs) are fundamental routine tasks that the majority of physically and mentally healthy people can independently execute. In this paper, we present a semantic framework for detecting problems in ADLs execution, monitored through smart home sensors. In the context of this work, we conducted a pilot study, gathering raw data from various sensors and devices installed in a smart home environment. The proposed framework combines multiple Semantic Web technologies (i.e., ontology, RDF, triplestore) to handle and transform these raw data into meaningful representations, forming a knowledge graph. Subsequently, SPARQL queries are used to define and construct explicit rules to detect problematic behaviors in ADL execution, a procedure that leads to generating new implicit knowledge. Finally, all available results are visualized in a clinician dashboard. The proposed framework can monitor the deterioration of ADLs performance for people across the dementia spectrum by offering a comprehensive way for clinicians to describe problematic behaviors in the everyday life of an individual.
日常生活活动(ADLs)是大多数身心健康的人都能够独立执行的基本日常任务。在本文中,我们提出了一个用于检测通过智能家居传感器监测到的 ADL 执行中出现问题的语义框架。在这项工作的背景下,我们进行了一项初步研究,从智能家居环境中安装的各种传感器和设备中收集原始数据。所提出的框架结合了多个语义 Web 技术(即本体、RDF、triplestore)来处理和转换这些原始数据,形成一个知识图。随后,使用 SPARQL 查询来定义和构建显式规则,以检测 ADL 执行中的问题行为,这一过程导致生成新的隐式知识。最后,所有可用的结果都在临床医生仪表板中可视化。该框架可以通过为临床医生提供一种全面的方法来描述个体日常生活中的问题行为,从而监测痴呆症患者人群 ADLs 表现的恶化。