Suppr超能文献

利用符号智能从可穿戴传感器生活方式数据中检测与健康相关的事件和行为:在多发性硬化症护理中的概念验证应用。

Detection of Health-Related Events and Behaviours from Wearable Sensor Lifestyle Data Using Symbolic Intelligence: A Proof-of-Concept Application in the Care of Multiple Sclerosis.

机构信息

Centre for Research & Technology Hellas, Information Technologies Institute, 6th Km Charilaou-Thermi, 57001 Thessaloniki, Greece.

School of Informatics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.

出版信息

Sensors (Basel). 2021 Sep 17;21(18):6230. doi: 10.3390/s21186230.

Abstract

In this paper, we demonstrate the potential of a knowledge-driven framework to improve the efficiency and effectiveness of care through remote and intelligent assessment. More specifically, we present a rule-based approach to detect health related problems from wearable lifestyle sensor data that add clinical value to take informed decisions on follow-up and intervention. We use OWL 2 ontologies as the underlying knowledge representation formalism for modelling contextual information and high-level concepts and relations among them. The conceptual model of our framework is defined on top of existing modelling standards, such as SOSA and WADM, promoting the creation of interoperable knowledge graphs. On top of the symbolic knowledge graphs, we define a rule-based framework for infusing expert knowledge in the form of SHACL constraints and rules to recognise patterns, anomalies and situations of interest based on the predefined and stored rules and conditions. A dashboard visualizes both sensor data and detected events to facilitate clinical supervision and decision making. Preliminary results on the performance and scalability are presented, while a focus group of clinicians involved in an exploratory research study revealed their preferences and perspectives to shape future clinical research using the framework.

摘要

在本文中,我们展示了一种知识驱动的框架的潜力,该框架可以通过远程和智能评估来提高护理的效率和效果。更具体地说,我们提出了一种基于规则的方法,从可穿戴生活方式传感器数据中检测与健康相关的问题,为后续和干预决策提供有价值的信息。我们使用 OWL 2 本体作为底层知识表示形式,用于对上下文信息和它们之间的高级概念和关系进行建模。我们框架的概念模型是在现有的建模标准(如 SOSA 和 WADM)之上定义的,促进了可互操作知识图的创建。在符号知识图之上,我们定义了一个基于规则的框架,以 SHACL 约束和规则的形式注入专家知识,以根据预定义的规则和条件识别模式、异常和感兴趣的情况。仪表板可视化传感器数据和检测到的事件,以方便临床监督和决策。本文介绍了性能和可扩展性的初步结果,而参与探索性研究的临床医生焦点小组则表达了他们的偏好和观点,以利用该框架为未来的临床研究提供参考。

相似文献

3
Symbolic representation of anatomical knowledge: concept classification and development strategies.
J Biomed Inform. 2001 Oct;34(5):321-47. doi: 10.1006/jbin.2001.1030.
5
Multichannel ECG recording from waist using textile sensors.
Biomed Eng Online. 2020 Jun 16;19(1):48. doi: 10.1186/s12938-020-00788-x.
7
[Artificial intelligence for future MD].
G Ital Nefrol. 2018 Dec;35(6).

引用本文的文献

1
Digital remote monitoring of people with multiple sclerosis.
Front Immunol. 2025 Feb 28;16:1514813. doi: 10.3389/fimmu.2025.1514813. eCollection 2025.
3
Artificial Intelligence and Multiple Sclerosis: Up-to-Date Review.
Cureus. 2023 Sep 17;15(9):e45412. doi: 10.7759/cureus.45412. eCollection 2023 Sep.
4
Multi-Sensors for Human Activity Recognition.
Sensors (Basel). 2023 May 10;23(10):4617. doi: 10.3390/s23104617.
5
Context-Aware Edge-Based AI Models for Wireless Sensor Networks-An Overview.
Sensors (Basel). 2022 Jul 25;22(15):5544. doi: 10.3390/s22155544.

本文引用的文献

1
A Survey on Knowledge Graphs: Representation, Acquisition, and Applications.
IEEE Trans Neural Netw Learn Syst. 2022 Feb;33(2):494-514. doi: 10.1109/TNNLS.2021.3070843. Epub 2022 Feb 3.
2
Unobtrusive Health Monitoring in Private Spaces: The Smart Home.
Sensors (Basel). 2021 Jan 28;21(3):864. doi: 10.3390/s21030864.
3
Accuracy of Wristband Fitbit Models in Assessing Sleep: Systematic Review and Meta-Analysis.
J Med Internet Res. 2019 Nov 28;21(11):e16273. doi: 10.2196/16273.
5
HABITAT: An IoT Solution for Independent Elderly.
Sensors (Basel). 2019 Mar 12;19(5):1258. doi: 10.3390/s19051258.
6
Use of eHealth and mHealth technology by persons with multiple sclerosis.
Mult Scler Relat Disord. 2019 Jan;27:13-19. doi: 10.1016/j.msard.2018.09.036. Epub 2018 Oct 2.
7
Multiple sclerosis, a treatable disease .
Clin Med (Lond). 2017 Dec;17(6):530-536. doi: 10.7861/clinmedicine.17-6-530.
8
Smart Homes for Elderly Healthcare-Recent Advances and Research Challenges.
Sensors (Basel). 2017 Oct 31;17(11):2496. doi: 10.3390/s17112496.
9
vhMentor: An Ontology Supported Mobile Agent System for Pervasive Health Care Monitoring.
Adv Exp Med Biol. 2017;989:57-65. doi: 10.1007/978-3-319-57348-9_5.
10
A Systematic Review of Wearable Patient Monitoring Systems - Current Challenges and Opportunities for Clinical Adoption.
J Med Syst. 2017 Jul;41(7):115. doi: 10.1007/s10916-017-0760-1. Epub 2017 Jun 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验