Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA.
Global DMPK Modeling & Simulation, Sanofi, 350 Water St, Cambridge, MA, 02141, USA.
J Pharmacokinet Pharmacodyn. 2024 Oct;51(5):477-492. doi: 10.1007/s10928-023-09899-z. Epub 2024 Feb 24.
Protein therapeutics have revolutionized the treatment of a wide range of diseases. While they have distinct physicochemical characteristics that influence their absorption, distribution, metabolism, and excretion (ADME) properties, the relationship between the physicochemical properties and PK is still largely unknown. In this work we present a minimal physiologically-based pharmacokinetic (mPBPK) model that incorporates a multivariate quantitative relation between a therapeutic's physicochemical parameters and its corresponding ADME properties. The model's compound-specific input includes molecular weight, molecular size (Stoke's radius), molecular charge, binding affinity to FcRn, and specific antigen affinity. Through derived and fitted empirical relationships, the model demonstrates the effect of these compound-specific properties on antibody disposition in both plasma and peripheral tissues using observed PK data in mice and humans. The mPBPK model applies the two-pore hypothesis to predict size-based clearance and exposure of full-length antibodies (150 kDa) and antibody fragments (50-100 kDa) within a onefold error. We quantitatively relate antibody charge and PK parameters like uptake rate, non-specific binding affinity, and volume of distribution to capture the relatively faster clearance of positively charged mAb as compared to negatively charged mAb. The model predicts the terminal plasma clearance of slightly positively and negatively charged antibody in humans within a onefold error. The mPBPK model presented in this work can be used to predict the target-mediated disposition of a drug when compound-specific and target-specific properties are known. To our knowledge, a combined effect of antibody weight, size, charge, FcRn, and antigen has not been incorporated and studied in a single mPBPK model previously. By conclusively incorporating and relating a multitude of protein's physicochemical properties to observed PK, our mPBPK model aims to contribute as a platform approach in the early stages of drug development where many of these properties can be optimized to improve a molecule's PK and ultimately its efficacy.
蛋白类药物极大地革新了多种疾病的治疗手段。虽然它们具有独特的理化特性,会影响其吸收、分布、代谢和排泄(ADME)特性,但理化特性与 PK 之间的关系在很大程度上仍然未知。在这项工作中,我们提出了一个最小生理基于药代动力学(mPBPK)模型,该模型将治疗剂的理化参数与其相应的 ADME 特性之间的多元定量关系纳入其中。模型的化合物特异性输入包括分子量、分子大小(Stokes 半径)、分子电荷、与 FcRn 的结合亲和力以及特定抗原亲和力。通过推导和拟合经验关系,该模型使用在小鼠和人体中观察到的 PK 数据,展示了这些化合物特异性特性对抗体在血浆和外周组织中分布的影响。mPBPK 模型应用两孔假说来预测全长抗体(150 kDa)和抗体片段(50-100 kDa)的基于大小的清除率和暴露率,误差在一倍以内。我们定量地将抗体电荷与 PK 参数(如摄取率、非特异性结合亲和力和分布容积)相关联,以捕获相对于带负电荷的 mAb,带正电荷的 mAb 清除较快的现象。该模型预测了在人体中带轻微正电荷和负电荷的抗体的终末血浆清除率,误差在一倍以内。本文提出的 mPBPK 模型可用于在已知化合物特异性和靶标特异性特性的情况下预测靶介导的药物处置。据我们所知,以前没有将抗体的重量、大小、电荷、FcRn 和抗原的综合影响纳入并研究在单个 mPBPK 模型中。通过明确地将大量蛋白的理化特性纳入并与观察到的 PK 相关联,我们的 mPBPK 模型旨在成为药物开发早期的平台方法,在早期阶段可以优化许多这些特性,以改善分子的 PK,最终提高其疗效。