Neuroscience Institute, Langone Health, New York University, New York, NY, USA; Subcortical Modulation Research Group, Institute of Experimental Medicine - Hungarian Research Network, Budapest, Hungary.
Neuroscience Institute, Langone Health, New York University, New York, NY, USA; Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.
Cell Rep. 2024 Mar 26;43(3):113807. doi: 10.1016/j.celrep.2024.113807. Epub 2024 Feb 23.
Hippocampal principal neurons display both spatial tuning properties and memory features. Whether this distinction corresponds to separate neuron types or a context-dependent continuum has been debated. We report here that the task-context ("splitter") feature is highly variable along both trial and spatial position axes. Neurons acquire or lose splitter features across trials even when place field features remain unaltered. Multiple place fields of the same neuron can individually encode both past or future run trajectories, implying that splitter fields are under the control of assembly activity. Place fields can be differentiated into subfields by the behavioral choice of the animal, and splitting within subfields evolves across trials. Interneurons also differentiate choices by integrating inputs from pyramidal cells. Finally, bilateral optogenetic inactivation of the medial entorhinal cortex reversibly decreases the fraction of splitter fields. Our findings suggest that place or splitter features are different manifestations of the same hippocampal computation.
海马体主要神经元表现出空间调谐特性和记忆特征。这种区别是对应于不同的神经元类型还是依赖于上下文的连续体一直存在争议。我们在这里报告说,任务上下文(“分割器”)特征在试验和空间位置轴上都高度可变。即使位置场特征保持不变,神经元也会在试验中获得或失去分割器特征。同一神经元的多个位置场可以分别编码过去或未来的运行轨迹,这意味着分割器场受集合活动的控制。通过动物的行为选择可以将位置场区分成子场,并且在试验中,子场内的分割会发生演变。中间神经元也通过整合来自锥体细胞的输入来区分选择。最后,内侧隔核的双侧光遗传学失活可可逆地降低分割器场的比例。我们的研究结果表明,位置或分割器特征是海马体计算的同一表现形式的不同表现。