Huang Jing-Wen, Chen Yan-Hong, Phoa Frederick Kin Hing, Lin Yan-Han, Lin Shau-Ping
Institute of Statistical Science, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan; Institute of Statistics, National Tsing Hua University, Taiwan.
Institute of Statistical Science, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan.
Biosystems. 2024 Mar;237:105163. doi: 10.1016/j.biosystems.2024.105163. Epub 2024 Feb 22.
In this paper, we explore the challenges associated with biomarker identification for diagnosis purpose in biomedical experiments, and propose a novel approach to handle the above challenging scenario via the generalization of the Dantzig selector. To improve the efficiency of the regularization method, we introduce a transformation from an inherent nonlinear programming due to its nonlinear link function into a linear programming framework under a reasonable assumption on the logistic probability range. We illustrate the use of our method on an experiment with binary response, showing superior performance on biomarker identification studies when compared to their conventional analysis. Our proposed method does not merely serve as a variable/biomarker selection tool, its ranking of variable importance provides valuable reference information for practitioners to reach informed decisions regarding the prioritization of factors for further investigations.
在本文中,我们探讨了生物医学实验中与用于诊断目的的生物标志物识别相关的挑战,并通过推广丹齐格选择器提出了一种新颖的方法来处理上述具有挑战性的情况。为了提高正则化方法的效率,在逻辑概率范围的合理假设下,我们引入了一种从由于其非线性链接函数导致的固有非线性规划到线性规划框架的变换。我们在一个具有二元响应的实验中说明了我们方法的使用,与传统分析相比,在生物标志物识别研究中显示出卓越的性能。我们提出的方法不仅作为一种变量/生物标志物选择工具,其变量重要性的排序为从业者在做出关于进一步研究因素优先级的明智决策时提供了有价值的参考信息。