C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA.
C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA.
Anal Chim Acta. 2024 Apr 1;1296:342268. doi: 10.1016/j.aca.2024.342268. Epub 2024 Jan 17.
Enzyme inhibitors comprise the largest class of pharmaceutical compounds. The discovery and development of new enzyme inhibitor drug candidates depends on sensitive tools to quantify inhibition constants, K, for the most promising candidates. A high throughput, automated, and miniaturized approach to measure inhibition is reported. In this technique enzyme inhibition occurs within a 16 nL nanogel reaction zone that is integrated into a capillary. The reaction and electrophoresis separation are completed in under 10 min. The nanoliter enzyme reaction zones are easily positioned inside a standard separation capillary by pseudo-immobilizing enzymes within a thermally reversible nanogel.
This report optimizes and validates a capillary nanogel electrophoresis reaction and separation with a multi-capillary array instrument. Inhibitor constants are determined for the neuraminidase enzyme to quantify the effect of the transition state analog, 2,3-dehydro-2-deoxy-N-acetylneuraminic acid (DANA), as well as the inhibitor Siastatin B. With the multi-capillary array assay replicate K values are determined to be 5.7 ± 0.1 μM (n = 3) and 9.2 ± 0.2 μM (n = 3) for DANA and Siastatin B, respectively. The enzyme reaction in each separation capillary converts the substrate to a product in real time. The nanogel is used under suppressed electroosmotic flow, sustains enzyme function, and is easily filled and replaced by changing the capillary temperature. Using laser-induced fluorescence allows the determination to be achieved with substrate concentrations well below the Michaelis-Menten constant, making the method independent of the substrate concentration and therefore a more easily implemented assay.
A lower measurement cost is realized when the reaction volume is miniaturized because the amounts of enzyme, substrate and inhibitor are reduced. Fast enzyme reactions are possible because of the small reaction volume. With a multi-capillary array, the inhibition assay is achieved in a fraction of the time required for traditional methods. The separation-based assay can even be applied to labeled substrates not cleaned up following the labeling reaction.
酶抑制剂是最大的一类药物化合物。新的酶抑制剂候选药物的发现和开发依赖于灵敏的工具来量化最有希望的候选物的抑制常数 K。本文报道了一种高通量、自动化和微型化的抑制测量方法。在该技术中,酶抑制发生在集成到毛细管中的 16nL 纳米凝胶反应区中。反应和电泳分离在不到 10 分钟内完成。纳米升酶反应区可以通过将酶热可逆地固定在纳米凝胶中,轻松地定位在标准分离毛细管内。
本报告优化并验证了带有多毛细管阵列仪器的毛细管纳米凝胶电泳反应和分离。通过测定神经氨酸酶的抑制常数来定量过渡态类似物 2,3-去氢-2-脱氧-N-乙酰神经氨酸(DANA)以及抑制剂 Siastatin B 的影响。使用多毛细管阵列测定法,重复测定的 K 值分别为 5.7±0.1μM(n=3)和 9.2±0.2μM(n=3)。对于 DANA 和 Siastatin B。每个分离毛细管中的酶反应实时将底物转化为产物。纳米凝胶在抑制电渗流下维持酶的功能,并且可以通过改变毛细管温度轻松填充和更换。使用激光诱导荧光可以在低于米氏常数的底物浓度下进行测定,使该方法独立于底物浓度,因此更容易实施测定。
当反应体积缩小时,测量成本降低,因为酶、底物和抑制剂的用量减少。由于反应体积小,快速酶反应成为可能。使用多毛细管阵列,抑制测定在传统方法所需时间的一小部分内完成。基于分离的测定甚至可以应用于标记反应后未进行清洗的标记底物。