文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

马赛克四价流感疫苗单纳米颗粒特性分析。

Mosaic quadrivalent influenza vaccine single nanoparticle characterization.

机构信息

Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9 West Watkins Mill Rd., Gaithersburg, MD, 20878, USA.

Twinbrook Imaging Facility, LIG, NIAID, NIH, Gaithersburg, MD, USA.

出版信息

Sci Rep. 2024 Feb 24;14(1):4534. doi: 10.1038/s41598-024-54876-2.


DOI:10.1038/s41598-024-54876-2
PMID:38402303
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10894272/
Abstract

Recent work by our laboratory and others indicates that co-display of multiple antigens on protein-based nanoparticles may be key to induce cross-reactive antibodies that provide broad protection against disease. To reach the ultimate goal of a universal vaccine for seasonal influenza, a mosaic influenza nanoparticle vaccine (FluMos-v1) was developed for clinical trial (NCT04896086). FluMos-v1 is unique in that it is designed to co-display four recently circulating haemagglutinin (HA) strains; however, current vaccine analysis techniques are limited to nanoparticle population analysis, thus, are unable to determine the valency of an individual nanoparticle. For the first time, we demonstrate by total internal reflection fluorescence microscopy and supportive physical-chemical methods that the co-display of four antigens is indeed achieved in single nanoparticles. Additionally, we have determined percentages of multivalent (mosaic) nanoparticles with four, three, or two HA proteins. The integrated imaging and physicochemical methods we have developed for single nanoparticle multivalency will serve to further understand immunogenicity data from our current FluMos-v1 clinical trial.

摘要

我们实验室和其他实验室的最近研究表明,在基于蛋白质的纳米颗粒上共同展示多种抗原可能是诱导交叉反应性抗体的关键,这种抗体可以提供针对疾病的广泛保护。为了实现季节性流感通用疫苗的最终目标,我们开发了一种嵌合流感纳米颗粒疫苗(FluMos-v1)用于临床试验(NCT04896086)。FluMos-v1 的独特之处在于,它旨在共同展示四种最近流行的血凝素(HA)株;然而,当前的疫苗分析技术仅限于纳米颗粒群体分析,因此无法确定单个纳米颗粒的效价。我们首次通过全内反射荧光显微镜和支持性物理化学方法证明,确实可以在单个纳米颗粒中共同展示四种抗原。此外,我们还确定了具有四个、三个或两个 HA 蛋白的多价(嵌合)纳米颗粒的百分比。我们为单纳米颗粒多价性开发的综合成像和物理化学方法将有助于进一步理解我们目前 FluMos-v1 临床试验中的免疫原性数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3735/10894272/b567d619fb60/41598_2024_54876_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3735/10894272/14d05c0b6fb2/41598_2024_54876_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3735/10894272/f09fcffd72a3/41598_2024_54876_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3735/10894272/2b5d728c34d1/41598_2024_54876_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3735/10894272/04ce9794f1eb/41598_2024_54876_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3735/10894272/b567d619fb60/41598_2024_54876_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3735/10894272/14d05c0b6fb2/41598_2024_54876_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3735/10894272/f09fcffd72a3/41598_2024_54876_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3735/10894272/2b5d728c34d1/41598_2024_54876_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3735/10894272/04ce9794f1eb/41598_2024_54876_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3735/10894272/b567d619fb60/41598_2024_54876_Fig5_HTML.jpg

相似文献

[1]
Mosaic quadrivalent influenza vaccine single nanoparticle characterization.

Sci Rep. 2024-2-24

[2]
Development and validation of a mass spectrometry based analytical method to quantify the ratios in hemagglutinin trimers in quadrivalent influenza nanoparticle vaccine - FluMos-v1.

Anal Methods. 2023-2-16

[3]
Quantitation of strain-specific hemagglutinin trimers in mosaic quadrivalent influenza nanoparticle vaccine by ELISA.

Vaccine. 2023-8-7

[4]
Development of Influenza B Universal Vaccine Candidates Using the "Mosaic" Hemagglutinin Approach.

J Virol. 2019-5-29

[5]
Induction of Cross-Reactive Hemagglutination Inhibiting Antibody and Polyfunctional CD4+ T-Cell Responses by a Recombinant Matrix-M-Adjuvanted Hemagglutinin Nanoparticle Influenza Vaccine.

Clin Infect Dis. 2021-12-6

[6]
Comparative Immunogenicity of Bacterially Expressed Soluble Trimers and Nanoparticle Displayed Influenza Hemagglutinin Stem Immunogens.

Front Immunol. 2022

[7]
Comparison of the safety and immunogenicity of a novel Matrix-M-adjuvanted nanoparticle influenza vaccine with a quadrivalent seasonal influenza vaccine in older adults: a phase 3 randomised controlled trial.

Lancet Infect Dis. 2022-1

[8]
Comparison of A(H3N2) Neutralizing Antibody Responses Elicited by 2018-2019 Season Quadrivalent Influenza Vaccines Derived from Eggs, Cells, and Recombinant Hemagglutinin.

Clin Infect Dis. 2021-12-6

[9]
Improving cross-protection against influenza virus in mice using a nanoparticle vaccine of mini-HA.

Vaccine. 2022-10-19

[10]
Influenza Virus Hemagglutinin Stalk-Specific Antibodies in Human Serum are a Surrogate Marker for Protection in a Serum Transfer Mouse Challenge Model.

mBio. 2017-9-19

引用本文的文献

[1]
SARS-CoV-2 RBD Scaffolded by AP205 or TIP60 Nanoparticles and Delivered as mRNA Elicits Robust Neutralizing Antibody Responses.

Vaccines (Basel). 2025-7-22

[2]
Ferritin-Based HA DNA Vaccine Outperforms Conventional Designs in Inducing Protective Immunity Against Seasonal Influenza.

Vaccines (Basel). 2025-7-10

[3]
Synthesis of Chirally Chimeric Protein Nanoparticle Vaccines via Mirror-Image Spy Chemistry.

Angew Chem Int Ed Engl. 2025-8-18

[4]
Vaccination against influenza viruses annually: Renewing or narrowing the protective shield?

J Exp Med. 2025-7-7

[5]
Progress and Challenges in HIV-1 Vaccine Research: A Comprehensive Overview.

Vaccines (Basel). 2025-1-31

[6]
Novel Administration Routes, Delivery Vectors, and Application of Vaccines Based on Biotechnologies: A Review.

Vaccines (Basel). 2024-9-1

本文引用的文献

[1]
Quantitation of strain-specific hemagglutinin trimers in mosaic quadrivalent influenza nanoparticle vaccine by ELISA.

Vaccine. 2023-8-7

[2]
Raman spectroscopy for viral diagnostics.

Biophys Rev. 2023-4-10

[3]
Characterization of Flu MOSAIC nanoparticle vaccine candidate using high performance size-exclusion chromatography to support vaccine process development.

Vaccine. 2023-4-6

[4]
Development and validation of a mass spectrometry based analytical method to quantify the ratios in hemagglutinin trimers in quadrivalent influenza nanoparticle vaccine - FluMos-v1.

Anal Methods. 2023-2-16

[5]
Virus Detection and Identification in Minutes Using Single-Particle Imaging and Deep Learning.

ACS Nano. 2023-1-10

[6]
Super-Resolution Microscopy Opens New Doors to Life at the Nanoscale.

J Neurosci. 2022-11-9

[7]
Total Internal Reflection Fluorescence (TIRF) Microscopy.

Curr Protoc. 2022-8

[8]
Nanoscale Mapping of Recombinant Viral Proteins: From Cells to Virus-Like Particles.

ACS Photonics. 2022-1-19

[9]
Seeing beyond the limit: A guide to choosing the right super-resolution microscopy technique.

J Biol Chem. 2021-7

[10]
Towards a Quantitative Single Particle Characterization by Super Resolution Microscopy: From Virus Structures to Antivirals Design.

Front Bioeng Biotechnol. 2021-3-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索