Enzyme Technology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India.
Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India.
Enzyme Microb Technol. 2024 May;176:110422. doi: 10.1016/j.enzmictec.2024.110422. Epub 2024 Feb 17.
The utilisation of carbonic anhydrase (CA) in CO sequestration is becoming prominent as an efficient, environment friendly and rapid catalyst for capturing CO from industrial emissions. However, the application of CA enzyme in soluble form is constrained due to its poor stability in operational conditions of CO capture and also production cost of the enzyme. Addressing these limitations, the present study focuses on the surface display of CA from Bacillus halodurans (BhCA) on E coli aiming to contribute to the cost-effectiveness of carbon capture through CA technology. This involved the fusion of the BhCA-encoding gene with the adhesion molecule involved in diffuse adherence (AIDA-I) autotransporter, resulting in the efficient display of BhCA (595 ± 60 U/gram dry cell weight). Verification of the surface display of BhCA was accomplished by conjugating with FITC labelled anti-his antibody followed by fluorescence-activated cell sorting (FACS) and cellular fractionation in conjunction with zymography. Biochemical characterisation of whole-cell biocatalyst revealed a noteworthy enhancement in thermostability, improvement in the thermostability with T of 90 ± 1.52 minutes at 50 ˚C, 36 ± 2.51 minutes at 60 ˚C and18 ± 1.52 minutes at 80˚C. Surface displayed BhCA displayed remarkable reusability retaining 100% activity even after 15 cycles. Surface displayed BhCA displayed highly alkali stable nature like free counterpart in solution. The alkali stability of the surface-displayed BhCA was comparable to its free counterpart in solution. Furthermore, the study investigated the impact of different metal ions, modulators, and detergents on the whole-cell biocatalysts. The present work represents the first report on surface display of CA utilising the AIDA-1 autotransporter.
碳酸酐酶(CA)在 CO 捕集中的应用因其作为从工业排放物中捕获 CO 的高效、环保和快速催化剂而变得越来越突出。然而,由于 CA 酶在 CO 捕集操作条件下稳定性差,以及酶的生产成本,其在可溶性形式中的应用受到限制。针对这些限制,本研究聚焦于将巴氏芽孢杆菌(Bacillus halodurans)的 CA (BhCA)在大肠杆菌表面进行展示,旨在通过 CA 技术为碳捕获的成本效益做出贡献。这涉及到将 BhCA 编码基因与参与弥散附着(AIDA-I)自转运的粘附分子融合,从而实现 BhCA 的高效展示(595±60 U/克干细胞重量)。通过与 FITC 标记的抗组氨酸抗体缀合,随后进行荧光激活细胞分选(FACS)和细胞级分以及同工酶分析,验证了 BhCA 的表面展示。全细胞生物催化剂的生化特性分析显示,热稳定性显著增强,在 50°C 时 T 为 90±1.52 分钟,在 60°C 时 T 为 36±2.51 分钟,在 80°C 时 T 为 18±1.52 分钟,耐热性得到改善。表面展示的 BhCA 表现出出色的可重复使用性,即使经过 15 次循环仍保留 100%的活性。与游离形式的 CA 类似,表面展示的 BhCA 具有显著的耐碱性,在溶液中其碱性稳定性与游离形式相当。此外,该研究还调查了不同金属离子、调节剂和去污剂对全细胞生物催化剂的影响。本研究代表了利用 AIDA-1 自转运蛋白进行 CA 表面展示的首次报告。