Suppr超能文献

工程化大肠杆菌中的周质碳酸酐酶作为 CO2 捕获的生物催化剂。

Engineered Escherichia coli with periplasmic carbonic anhydrase as a biocatalyst for CO2 sequestration.

机构信息

School of Interdisciplinary Bioscience and Bioengineering.

出版信息

Appl Environ Microbiol. 2013 Nov;79(21):6697-705. doi: 10.1128/AEM.02400-13. Epub 2013 Aug 23.

Abstract

Carbonic anhydrase is an enzyme that reversibly catalyzes the hydration of carbon dioxide (CO2). It has been suggested recently that this remarkably fast enzyme can be used for sequestration of CO2, a major greenhouse gas, making this a promising alternative for chemical CO2 mitigation. To promote the economical use of enzymes, we engineered the carbonic anhydrase from Neisseria gonorrhoeae (ngCA) in the periplasm of Escherichia coli, thereby creating a bacterial whole-cell catalyst. We then investigated the application of this system to CO2 sequestration by mineral carbonation, a process with the potential to store large quantities of CO2. ngCA was highly expressed in the periplasm of E. coli in a soluble form, and the recombinant bacterial cell displayed the distinct ability to hydrate CO2 compared with its cytoplasmic ngCA counterpart and previously reported whole-cell CA systems. The expression of ngCA in the periplasm of E. coli greatly accelerated the rate of calcium carbonate (CaCO3) formation and exerted a striking impact on the maximal amount of CaCO3 produced under conditions of relatively low pH. It was also shown that the thermal stability of the periplasmic enzyme was significantly improved. These results demonstrate that the engineered bacterial cell with periplasmic ngCA can successfully serve as an efficient biocatalyst for CO2 sequestration.

摘要

碳酸酐酶是一种能够可逆地催化二氧化碳(CO2)水合的酶。最近有人提出,这种速度非常快的酶可用于 CO2 的捕集,CO2 是一种主要的温室气体,这为化学 CO2 减排提供了一种很有前途的替代方法。为了促进酶的经济使用,我们在大肠杆菌的周质空间中对淋病奈瑟氏菌(ngCA)的碳酸酐酶进行了工程改造,从而创造了一种细菌全细胞催化剂。然后,我们研究了该系统在矿物碳化(mineral carbonation)中用于 CO2 捕集的应用,该过程有可能储存大量的 CO2。ngCA 以可溶形式在大肠杆菌的周质空间中高度表达,与细胞质中的 ngCA 对应物和以前报道的全细胞 CA 系统相比,重组细菌细胞显示出明显的 CO2 水合能力。ngCA 在大肠杆菌周质中的表达极大地加快了碳酸钙(CaCO3)的形成速度,并对相对较低 pH 条件下产生的最大 CaCO3 量产生了显著影响。还表明,周质酶的热稳定性得到了显著提高。这些结果表明,具有周质 ngCA 的工程化细菌细胞可以成功用作 CO2 捕集的高效生物催化剂。

相似文献

1
Engineered Escherichia coli with periplasmic carbonic anhydrase as a biocatalyst for CO2 sequestration.
Appl Environ Microbiol. 2013 Nov;79(21):6697-705. doi: 10.1128/AEM.02400-13. Epub 2013 Aug 23.
3
Biosilica-coated carbonic anhydrase displayed on Escherichia coli: A novel design approach for efficient and stable biocatalyst for CO sequestration.
Int J Biol Macromol. 2024 Oct;277(Pt 2):134058. doi: 10.1016/j.ijbiomac.2024.134058. Epub 2024 Jul 20.
4
Biomineralization-based conversion of carbon dioxide to calcium carbonate using recombinant carbonic anhydrase.
Chemosphere. 2012 Jun;87(10):1091-6. doi: 10.1016/j.chemosphere.2012.02.003. Epub 2012 Mar 5.
5
Engineering the genetic components of a whole-cell catalyst for improved enzymatic CO capture and utilization.
Biotechnol Bioeng. 2020 Jan;117(1):39-48. doi: 10.1002/bit.27175. Epub 2019 Oct 8.
7
Carbon dioxide capture using Escherichia coli expressing carbonic anhydrase in a foam bioreactor.
Environ Technol. 2016 Dec;37(24):3186-92. doi: 10.1080/09593330.2016.1181110. Epub 2016 May 12.
9
Periplasmic expression of carbonic anhydrase in Escherichia coli: a new biocatalyst for CO(2) hydration.
Biotechnol Bioeng. 2013 Jul;110(7):1865-73. doi: 10.1002/bit.24863. Epub 2013 Mar 1.
10
Biosequestration of carbon dioxide using carbonic anhydrase from novel Streptomyces kunmingensis.
Arch Microbiol. 2022 Apr 20;204(5):270. doi: 10.1007/s00203-022-02887-w.

引用本文的文献

1
Overexpression of native carbonic anhydrases increases carbon conversion efficiency in the methanotrophic biocatalyst Bath.
mSphere. 2024 Sep 25;9(9):e0049624. doi: 10.1128/msphere.00496-24. Epub 2024 Aug 27.
3
Biochemical characterization of a psychrophilic and halotolerant α-carbonic anhydrase from a deep-sea bacterium, .
AIMS Microbiol. 2023 Jun 19;9(3):540-553. doi: 10.3934/microbiol.2023028. eCollection 2023.
4
Biomimetic Carbon Sequestration and Cyanate Detoxification Using Heat-Purified Carbonic Anhydrase from .
Biomimetics (Basel). 2023 Aug 14;8(4):365. doi: 10.3390/biomimetics8040365.
5
Direct Biocatalytic Processes for CO Capture as a Green Tool to Produce Value-Added Chemicals.
Molecules. 2023 Jul 19;28(14):5520. doi: 10.3390/molecules28145520.
6
Insights into Enzyme Reactions with Redox Cofactors in Biological Conversion of CO.
J Microbiol Biotechnol. 2023 Nov 28;33(11):1403-1411. doi: 10.4014/jmb.2306.06005. Epub 2023 Jun 26.
7
Carbonic Anhydrase-Embedded ZIF-8 Electrospun PVA Fibers as an Excellent Biocatalyst Candidate.
ACS Omega. 2023 May 9;8(20):17809-17818. doi: 10.1021/acsomega.3c00691. eCollection 2023 May 23.
8
Novel bovine carbonic anhydrase encapsulated in a metal-organic framework: a new platform for biomimetic sequestration of CO.
RSC Adv. 2019 Sep 10;9(49):28460-28469. doi: 10.1039/c9ra04603h. eCollection 2019 Sep 9.
9
Surface display of carbonic anhydrase on for CO capture and mineralization.
Synth Syst Biotechnol. 2021 Dec 6;7(1):460-473. doi: 10.1016/j.synbio.2021.11.008. eCollection 2022 Mar.
10
Enhanced Production of a Thermostable Carbonic Anhydrase in by Using a Modified NEXT Tag.
Molecules. 2021 Sep 26;26(19):5830. doi: 10.3390/molecules26195830.

本文引用的文献

1
Engineered yeast for enhanced CO mineralization.
Energy Environ Sci. 2013 Feb 1;6(2):660-674. doi: 10.1039/C2EE24060B.
2
Enhancement of extracellular electron transfer and bioelectricity output by synthetic porin.
Biotechnol Bioeng. 2013 Feb;110(2):408-16. doi: 10.1002/bit.24732. Epub 2012 Oct 5.
3
Calcium carbonate mineralization: involvement of extracellular polymeric materials isolated from calcifying bacteria.
Microsc Microanal. 2012 Aug;18(4):829-39. doi: 10.1017/S1431927612000426. Epub 2012 Jun 15.
4
High-yield export of a native heterologous protein to the periplasm by the tat translocation pathway in Escherichia coli.
Biotechnol Bioeng. 2012 Oct;109(10):2533-42. doi: 10.1002/bit.24535. Epub 2012 May 11.
5
Biomineralization-based conversion of carbon dioxide to calcium carbonate using recombinant carbonic anhydrase.
Chemosphere. 2012 Jun;87(10):1091-6. doi: 10.1016/j.chemosphere.2012.02.003. Epub 2012 Mar 5.
6
Mechanisms underlying CO2 diffusion in leaves.
Curr Opin Plant Biol. 2012 Jun;15(3):276-81. doi: 10.1016/j.pbi.2012.01.011. Epub 2012 Jan 31.
7
Biomimetic CO₂ sequestration using purified carbonic anhydrase from indigenous bacterial strains immobilized on biopolymeric materials.
Enzyme Microb Technol. 2011 Apr 7;48(4-5):416-26. doi: 10.1016/j.enzmictec.2011.02.001. Epub 2011 Feb 26.
8
Activity and stability of immobilized carbonic anhydrase for promoting CO2 absorption into a carbonate solution for post-combustion CO2 capture.
Bioresour Technol. 2011 Nov;102(22):10194-201. doi: 10.1016/j.biortech.2011.09.043. Epub 2011 Sep 17.
9
Biotechnology for the acceleration of carbon dioxide capture and sequestration.
Curr Opin Biotechnol. 2011 Dec;22(6):818-23. doi: 10.1016/j.copbio.2011.06.006. Epub 2011 Jul 5.
10
Cell surface display of carbonic anhydrase on Escherichia coli using ice nucleation protein for CO₂ sequestration.
Biotechnol Bioeng. 2011 Dec;108(12):2853-64. doi: 10.1002/bit.23251. Epub 2011 Jul 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验