Suppr超能文献

细菌分裂蛋白MinDE在鞭毛形成中具有独立功能。

The bacterial division protein MinDE has an independent function in flagellation.

作者信息

Pradhan Pinkilata, Taviti Ashoka Chary, Beuria Tushar Kant

机构信息

Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India; Regional Centre for Biotechnology, Faridabad, Haryana, India.

Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India.

出版信息

J Biol Chem. 2024 Apr;300(4):107117. doi: 10.1016/j.jbc.2024.107117. Epub 2024 Feb 23.

Abstract

Before preparing for division, bacteria stop their motility. During the exponential growth phase in Escherichia coli, when the rate of bacterial division is highest, the expression of flagellar genes is repressed and bacterial adhesion is enhanced. Hence, it is evident that cell division and motility in bacteria are linked; however, the specific molecular mechanism by which these two processes are linked is not known. While observing E. coli, we found that compared to the WT, the E. coli (Δmin) cells show higher motility and flagellation. We demonstrated that the higher motility was due to the absence of the Min system and can be restored to normal in the presence of Min proteins, where Min system negatively regulates flagella formation. The Min system in E. coli is widely studied for its role in the inhibition of polar Z-ring formation through its pole-to-pole oscillation. However, its role in bacterial motility is not explored. MinD homologs, FlhG and FleN, are known to control flagellar expression through their interaction with FlrA and FleQ, respectively. AtoC, a part of the two-component system AtoSC complex, is homologous to FlrA/FleQ, and the complex is involved in E. coli flagellation via its interaction with the fliA promoter. We have shown that MinD interacts directly with the AtoS of AtoSC complex and controls the fliA expression. Our findings suggest that the Min system acts as a link between cell division and motility in E. coli.

摘要

在准备分裂之前,细菌会停止运动。在大肠杆菌的指数生长期,当细菌分裂速率最高时,鞭毛基因的表达受到抑制,细菌黏附增强。因此,很明显细菌的细胞分裂和运动是相关联的;然而,这两个过程相关联的具体分子机制尚不清楚。在观察大肠杆菌时,我们发现与野生型相比,大肠杆菌(Δmin)细胞表现出更高的运动性和鞭毛形成。我们证明,更高的运动性是由于缺少Min系统,并且在存在Min蛋白的情况下可以恢复正常,其中Min系统对鞭毛形成起负调控作用。大肠杆菌中的Min系统因其通过极到极振荡抑制极性Z环形成的作用而被广泛研究。然而,其在细菌运动中的作用尚未被探索。已知MinD的同源物FlhG和FleN分别通过与FlrA和FleQ相互作用来控制鞭毛表达。AtoC是双组分系统AtoSC复合物的一部分,与FlrA/FleQ同源,并且该复合物通过与fliA启动子相互作用参与大肠杆菌的鞭毛形成。我们已经表明MinD直接与AtoSC复合物的AtoS相互作用并控制fliA表达。我们的发现表明Min系统在大肠杆菌的细胞分裂和运动之间起连接作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验