Suppr超能文献

硫辛酰胺脱氢酶和谷胱甘肽还原酶与胂酸和亚胂酸的反应。

Reactions of lipoamide dehydrogenase and glutathione reductase with arsonic acids and arsonous acids.

作者信息

Knowles F C

出版信息

Arch Biochem Biophys. 1985 Oct;242(1):1-10. doi: 10.1016/0003-9861(85)90472-2.

Abstract

Lipoamide dehydrogenase reacts irreversibly with arsonous acids, RAs(OH)2, and arsonic acids, RAs(O)(OH)2, to form enzyme-inhibitor complexes. The formation of inactive enzyme requires NADH and is kinetically first order in the presence of excess arsonous acid. The second-order rate constant for formation of the enzyme-inhibitor complex was 545 min-1 M-1 for phenylarsonous acid, C6H5As(OH)2, and 5640 min-1 M-1 for methanearsonous acid, CH3As(OH)2. The kinetics of formation of inactive enzyme in the presence of arsonic acids was found to obey a rate law predicted by a two-step mechanism in which a rate-limiting reduction of an arsonic acid to the corresponding arsonous acid by reduced enzyme, E(SH)2, preceded formation of an inactive binary complex of reduced enzyme and arsonous acid: ES2 + NADH + H+ = E(SH)2 + NAD+; E(SH)2 + RAs(O)(OH)2 = ES2 + RAs(OH)2 + H2O; and E(SH)2 + RAs(OH)2 = ES2AsR + 2H2O. GSSG reductase reacts reversibly with C6H5As(OH)2 to form an inactive binary addition compound in the presence of NADPH. The value of the association constant for formation of enzyme inhibitor complex at pH 7.0 was 119 M-1. The initial rate of the GSSG reductase-catalyzed oxidation of NADPH by GSSG was insensitive to MeAs(OH)2. The kinetics of inhibition of GSSG reductase by arsenite and C6H5As(O)(OH)2 were found to obey the rate law described for lipoamide dehydrogenase and arsonic acids. GSSG reductase catalyzed the oxidation of NADPH by p-arsanilic acid. The initial rate of oxidation of NADPH was linearly dependent on enzyme concentration. The turnover number for GSSG reductase with p-arsanilic acid as an oxidant was 0.13 mol NADPH mol FAD-1 min-1.

摘要

硫辛酰胺脱氢酶与亚胂酸RAs(OH)₂和胂酸RAs(O)(OH)₂发生不可逆反应,形成酶 - 抑制剂复合物。无活性酶的形成需要NADH,在过量亚胂酸存在下动力学上为一级反应。对于苯亚胂酸C₆H₅As(OH)₂,酶 - 抑制剂复合物形成的二级速率常数为545 min⁻¹ M⁻¹,对于甲胂酸CH₃As(OH)₂为5640 min⁻¹ M⁻¹。发现在胂酸存在下无活性酶形成的动力学服从由两步机制预测的速率定律,其中限速步骤是还原型酶E(SH)₂将胂酸还原为相应的亚胂酸,然后形成还原型酶与亚胂酸的无活性二元复合物:ES₂ + NADH + H⁺ = E(SH)₂ + NAD⁺;E(SH)₂ + RAs(O)(OH)₂ = ES₂ + RAs(OH)₂ + H₂O;以及E(SH)₂ + RAs(OH)₂ = ES₂AsR + 2H₂O。谷胱甘肽还原酶在NADPH存在下与C₆H₅As(OH)₂可逆反应,形成无活性的二元加成化合物。在pH 7.0时形成酶抑制剂复合物的缔合常数的值为119 M⁻¹。谷胱甘肽还原酶催化的谷胱甘肽对NADPH的氧化初始速率对MeAs(OH)₂不敏感。发现亚砷酸盐和C₆H₅As(O)(OH)₂对谷胱甘肽还原酶的抑制动力学服从针对硫辛酰胺脱氢酶和胂酸描述的速率定律。谷胱甘肽还原酶催化对氨基苯胂酸对NADPH的氧化。NADPH氧化的初始速率与酶浓度呈线性相关。以对氨基苯胂酸作为氧化剂时,谷胱甘肽还原酶的周转数为0.13 mol NADPH mol FAD⁻¹ min⁻¹。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验