Virginia Tech (Biomedical Engineering and Mechanics), Blacksburg, VA, USA.
Ann Biomed Eng. 2024 May;52(5):1415-1424. doi: 10.1007/s10439-024-03466-4. Epub 2024 Feb 25.
Head impact sensors worn in the mouth are popular because they couple directly to the teeth and provide six-degree-of-freedom head measurements. Mouthpiece signal filters have conventionally used cutoff frequencies lower than recommended practices (Society of Automotive Engineers, SAE J211-1) to eliminate extraneous noise when measuring with live subjects. However, there is little information about the effects of filter choice on the accuracy of signals measured by instrumented mouthpieces. Lack of standardization in head impact measurement device post-processing techniques can result in data that are not comparable across studies or device brands. This study sought optimal filter cutoff frequencies for six-degree-of-freedom measurements made at the teeth using instrumented mouthguards. We collected linear acceleration and angular velocity signals at the head center of gravity (CG) using laboratory-grade instrumentation. We also collected and filtered similar six-degree-of-freedom measurements from an instrumented mouthguard using 24 cutoff frequencies, from 25 to 600 Hz. We transformed the measurements to linear acceleration at the center of gravity of the head (CG) using all kinematic variables at the teeth, optimizing linear and angular mouthguard cutoff frequencies with one equation. We calculated the percent error in transformed peak resultant linear acceleration and minimized the mean and standard deviation in error. The optimal cutoff frequencies were 175 Hz for linear acceleration and 250 Hz for angular velocity. Rigid impacts (3-5 ms duration) had higher optimal cutoff frequencies (175 Hz linear acceleration, 275 Hz angular velocity) than padded impacts (10-12 ms duration; 100 Hz linear acceleration, 175 Hz angular velocity), and all impacts together (3-12 ms duration; 175 Hz linear acceleration, 250 Hz angular velocity). Instrumented mouthpiece manufacturers and researchers using these devices should consider these optimal filter cutoff frequencies to minimize measurement error. Sport-specific filter criteria for teeth-based sensors may be warranted to account for the difference in optimal cutoff frequency combination by impact duration.
头盔内佩戴的头部冲击传感器因其能直接与牙齿耦合并提供六自由度头部测量而受到欢迎。传统上,口部信号滤波器使用低于推荐实践(汽车工程师学会,SAE J211-1)的截止频率来消除在有生命的受试者进行测量时的额外噪声。然而,关于滤波器选择对口部传感器测量信号准确性的影响的信息很少。在头部冲击测量设备后处理技术中缺乏标准化可能导致不同研究或设备品牌之间的数据不可比。本研究旨在为使用仪器化牙套在牙齿处进行六自由度测量确定最佳的滤波器截止频率。我们使用实验室级仪器在头部重心(CG)处收集线性加速度和角速度信号。我们还使用 24 个截止频率(25 至 600 Hz)从仪器化牙套中收集和过滤类似的六自由度测量值。我们使用牙齿处的所有运动学变量将测量值转换为头部重心(CG)处的线性加速度,使用一个方程优化线性和角加速度牙套的截止频率。我们计算了转换后的峰值合成线性加速度的误差百分比,并最小化了误差的平均值和标准差。线性加速度的最佳截止频率为 175 Hz,角速度的最佳截止频率为 250 Hz。刚性冲击(3-5 ms 持续时间)的最佳截止频率较高(线性加速度 175 Hz,角速度 275 Hz),而软垫冲击(10-12 ms 持续时间;线性加速度 100 Hz,角速度 175 Hz)和所有冲击(3-12 ms 持续时间;线性加速度 175 Hz,角速度 250 Hz)的最佳截止频率较低。使用这些设备的仪器化牙套制造商和研究人员应考虑这些最佳滤波器截止频率,以最小化测量误差。可能需要针对基于牙齿的传感器制定特定运动的滤波器标准,以解释冲击持续时间引起的最佳截止频率组合的差异。