Suppr超能文献

内窥镜检查的全面进展:用于融合白光成像(WLI)和共聚焦激光内镜检查(CBI)成像的光学设计、算法增强及临床验证

Comprehensive advancement in endoscopy: optical design, algorithm enhancement, and clinical validation for merged WLI and CBI imaging.

作者信息

Fu Ye, Zhang Shipeng, Ma Longfei, Zhao Zhe, Liao Hongen, Xie Tianyu

机构信息

Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China.

Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.

出版信息

Biomed Opt Express. 2024 Jan 2;15(2):506-523. doi: 10.1364/BOE.506134. eCollection 2024 Feb 1.

Abstract

As endoscopic imaging technology advances, there is a growing clinical demand for enhanced imaging capabilities. Although conventional white light imaging (WLI) endoscopy offers realistic images, it often cannot reveal detailed characteristics of the mucosa. On the other hand, optical staining endoscopy, such as Compound Band Imaging (CBI), can discern subtle structures, serving to some extent as an optical biopsy. However, its image brightness is low, and the colors can be abrupt. These two techniques, commonly used in clinical settings, have complementary advantages. Nonetheless, they require different lighting conditions, which makes it challenging to combine their imaging strengths on living tissues. In this study, we introduce a novel endoscopic imaging technique that effectively combines the advantages of both WLI and CBI. Doctors don't need to manually switch between these two observation modes, as they can obtain the image information of both modes in one image. We calibrated an appropriate proportion for simultaneous illumination with the light required for WLI and CBI. We designed a new illumination spectrum tailored for gastrointestinal examination, achieving their fusion at the optical level. Using a new algorithm that focuses on enhancing specific hemoglobin tissue features, we restored narrow-band image characteristics lost due to the introduction of white light. Our hardware and software innovations not only boost the illumination brightness of the endoscope but also ensure the narrow-band feature details of the image. To evaluate the reliability and safety of the new endoscopic system, we conducted a series of tests in line with relevant international standards and validated the design parameters. For clinical trials, we collected a total of 256 sets of images, each set comprising images of the same lesion location captured using WLI, CBI, and our proposed method. We recruited four experienced clinicians to conduct subjective evaluations of the collected images. The results affirmed the significant advantages of our method. We believe that the novel endoscopic system we introduced has vast potential for clinical application in the future.

摘要

随着内镜成像技术的进步,临床对增强成像能力的需求日益增长。尽管传统的白光成像(WLI)内镜能提供逼真的图像,但它往往无法揭示黏膜的详细特征。另一方面,光学染色内镜,如复合带成像(CBI),能够辨别细微结构,在一定程度上起到光学活检的作用。然而,其图像亮度较低,颜色可能也较为突兀。这两种临床常用技术具有互补优势。尽管如此,它们需要不同的照明条件,这使得在活体组织上结合它们的成像优势具有挑战性。在本研究中,我们引入了一种新颖的内镜成像技术,有效结合了WLI和CBI的优势。医生无需手动在这两种观察模式之间切换,因为他们可以在一张图像中获取两种模式的图像信息。我们校准了WLI和CBI所需光线同时照明的适当比例。我们设计了一种专门为胃肠检查量身定制的新照明光谱,在光学层面实现了它们的融合。使用一种专注于增强特定血红蛋白组织特征的新算法,我们恢复了因引入白光而丢失的窄带图像特征。我们的硬件和软件创新不仅提高了内镜的照明亮度,还确保了图像的窄带特征细节。为了评估新内镜系统的可靠性和安全性,我们按照相关国际标准进行了一系列测试,并验证了设计参数。对于临床试验,我们总共收集了256组图像,每组包括使用WLI、CBI和我们提出的方法在相同病变位置拍摄的图像。我们招募了四位经验丰富的临床医生对收集的图像进行主观评估。结果证实了我们方法的显著优势。我们相信,我们引入的新型内镜系统在未来具有巨大的临床应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ec8/10890891/ec1050801e12/boe-15-2-506-g001.jpg

相似文献

1
Comprehensive advancement in endoscopy: optical design, algorithm enhancement, and clinical validation for merged WLI and CBI imaging.
Biomed Opt Express. 2024 Jan 2;15(2):506-523. doi: 10.1364/BOE.506134. eCollection 2024 Feb 1.
2
A novel endoscopy image fusion system: combine white light imaging and compound band imaging.
Int J Comput Assist Radiol Surg. 2024 Feb;19(2):331-344. doi: 10.1007/s11548-023-02988-x. Epub 2023 Aug 21.
3
Image partitioning and illumination in image-based pose detection for teleoperated flexible endoscopes.
Artif Intell Med. 2013 Nov;59(3):185-96. doi: 10.1016/j.artmed.2013.09.002. Epub 2013 Oct 10.
5
TXI: Texture and Color Enhancement Imaging for Endoscopic Image Enhancement.
J Healthc Eng. 2021 Apr 7;2021:5518948. doi: 10.1155/2021/5518948. eCollection 2021.
8
Role of Macroscopic Image Enhancement in Diagnosis of Non-Muscle-Invasive Bladder Cancer: An Analytical Review.
Front Surg. 2022 Feb 21;9:762027. doi: 10.3389/fsurg.2022.762027. eCollection 2022.

引用本文的文献

1
Ability of detection in different resolution endoscopy for upper gastrointestinal mucosal lesions.
Surg Endosc. 2024 Oct;38(10):5903-5913. doi: 10.1007/s00464-024-11186-y. Epub 2024 Aug 21.

本文引用的文献

1
A novel endoscopy image fusion system: combine white light imaging and compound band imaging.
Int J Comput Assist Radiol Surg. 2024 Feb;19(2):331-344. doi: 10.1007/s11548-023-02988-x. Epub 2023 Aug 21.
2
Development and clinical usefulness of a unique red dichromatic imaging technology in gastrointestinal endoscopy: A narrative review.
Therap Adv Gastroenterol. 2022 Sep 2;15:17562848221118302. doi: 10.1177/17562848221118302. eCollection 2022.
3
Endoscopic diagnosis and treatment of gastric dysplasia and early cancer: Current evidence and what the future may hold.
World J Gastroenterol. 2021 Aug 21;27(31):5126-5151. doi: 10.3748/wjg.v27.i31.5126.
4
Comparative study of the methodologies used for subjective medical image quality assessment.
Phys Med Biol. 2021 Jul 26;66(15). doi: 10.1088/1361-6560/ac1157.
5
Clinically Available Optical Imaging Technologies in Endoscopic Lesion Detection: Current Status and Future Perspective.
J Healthc Eng. 2021 Feb 9;2021:7594513. doi: 10.1155/2021/7594513. eCollection 2021.
6
Diagnostic limitations of magnifying endoscopy with narrow-band imaging in early gastric cancer.
Endosc Int Open. 2020 Oct;8(10):E1233-E1242. doi: 10.1055/a-1220-6389. Epub 2020 Sep 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验