Suppr超能文献

定制精确、可调谐且通用的级联电荷转移链以实现多功能光氧化还原催化。

Customizing precise, tunable, and universal cascade charge transfer chains towards versatile photoredox catalysis.

作者信息

Yan Xian, Dong Jun-Hao, Zheng Jing-Ying, Wu Yue, Xiao Fang-Xing

机构信息

College of Materials Science and Engineering, Fuzhou University New Campus Fujian Province 350108 China

出版信息

Chem Sci. 2024 Jan 9;15(8):2898-2913. doi: 10.1039/d3sc05761e. eCollection 2024 Feb 22.

Abstract

The core factors dictating the photocatalysis efficiency are predominantly centered on controllable modulation of anisotropic spatial charge transfer/separation and regulating vectorial charge transport pathways. Nonetheless, the sluggish charge transport kinetics and incapacity of precisely tuning interfacial charge flow at the nanoscale level are still the primary dilemma. Herein, we conceptually demonstrate the elaborate design of a cascade charge transport chain over transition metal chalcogenide-insulating polymer-cocatalyst (TIC) photosystems a progressive self-assembly strategy. The intermediate ultrathin non-conjugated insulating polymer layer, , poly(diallyl-dimethylammonium chloride) (PDDA), functions as the interfacial electron relay medium, and simultaneously, outermost co-catalysts serve as the terminal "electron reservoirs", synergistically contributing to the charge transport cascade pathway and substantially boosting the interfacial charge separation. We found that the insulating polymer mediated unidirectional charge transfer cascade is universal for a large variety of metal or non-metal reducing co-catalysts (Au, Ag, Pt, Ni, Co, Cu, NiSe, CoSe, and CuSe). More intriguingly, such peculiar charge flow characteristics endow the self-assembled TIC photosystems with versatile visible-light-driven photoredox catalysis towards photocatalytic hydrogen generation, anaerobic selective organic transformation, and CO-to-fuel conversion. Our work would provide new inspiration for smartly mediating spatial vectorial charge transport towards emerging solar energy conversion.

摘要

决定光催化效率的核心因素主要集中在对各向异性空间电荷转移/分离的可控调制以及调节矢量电荷传输途径上。尽管如此,缓慢的电荷传输动力学以及在纳米尺度上精确调节界面电荷流动的能力不足仍然是主要难题。在此,我们从概念上展示了一种过渡金属硫族化物-绝缘聚合物-助催化剂(TIC)光系统的级联电荷传输链的精心设计——一种渐进的自组装策略。中间的超薄非共轭绝缘聚合物层,即聚二烯丙基二甲基氯化铵(PDDA),充当界面电子中继介质,同时,最外层的助催化剂充当终端“电子库”,协同促进电荷传输级联途径并大幅提高界面电荷分离。我们发现绝缘聚合物介导的单向电荷转移级联对于多种金属或非金属还原助催化剂(Au、Ag、Pt、Ni、Co、Cu、NiSe、CoSe和CuSe)具有普遍性。更有趣的是,这种独特的电荷流动特性赋予自组装的TIC光系统在可见光驱动的光氧化还原催化方面具有多功能性,可用于光催化产氢、厌氧选择性有机转化以及CO到燃料的转化。我们的工作将为巧妙介导空间矢量电荷传输以实现新兴太阳能转化提供新的灵感。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8679/10882519/d63fdbe8c57a/d3sc05761e-s1.jpg

相似文献

1
Customizing precise, tunable, and universal cascade charge transfer chains towards versatile photoredox catalysis.
Chem Sci. 2024 Jan 9;15(8):2898-2913. doi: 10.1039/d3sc05761e. eCollection 2024 Feb 22.
2
Unleashing non-conjugated polymers as charge relay mediators.
Chem Sci. 2021 Dec 17;13(2):497-509. doi: 10.1039/d1sc04877e. eCollection 2022 Jan 5.
3
Photocarrier tunneling triggering CO photocatalysis.
Chem Sci. 2024 Jun 3;15(27):10625-10637. doi: 10.1039/d4sc02313g. eCollection 2024 Jul 10.
4
Maneuvering the Directional Charge Flow for Photoredox Organic Conversion.
Inorg Chem. 2023 Nov 13;62(45):18649-18659. doi: 10.1021/acs.inorgchem.3c02951. Epub 2023 Oct 30.
5
Partially Self-Transformed Transition-Metal Chalcogenide Interim Layer: Motivating Charge Transport Cascade for Solar Hydrogen Evolution.
Inorg Chem. 2020 Feb 17;59(4):2562-2574. doi: 10.1021/acs.inorgchem.9b03538. Epub 2020 Feb 4.
6
Layer-By-Layer Assembly of Atomically Precise Alloy Nanoclusters Photosystems for Solar Water Oxidation.
Small. 2024 Feb;20(7):e2307619. doi: 10.1002/smll.202307619. Epub 2023 Oct 6.
7
Electron Tunneling Fosters Solar-to-Hydrogen Energy Conversion.
Inorg Chem. 2023 Oct 23;62(42):17454-17463. doi: 10.1021/acs.inorgchem.3c02857. Epub 2023 Oct 12.
8
Atomically precise metal nanoclusters combine with MXene towards solar CO conversion.
Chem Sci. 2024 Jul 19;15(33):13495-13505. doi: 10.1039/d4sc03663h. eCollection 2024 Aug 22.
9
Solar-CO -to-Syngas Conversion Enabled by Precise Charge Transport Modulation.
Small. 2023 Aug;19(35):e2300804. doi: 10.1002/smll.202300804. Epub 2023 May 14.
10
Atomically Precise Metal Nanocluster Photosystem: Electron Relay Boosts Photocatalytic Organic Transformation.
Inorg Chem. 2023 Nov 27;62(47):19358-19365. doi: 10.1021/acs.inorgchem.3c03283. Epub 2023 Nov 15.

引用本文的文献

本文引用的文献

1
Solar-CO -to-Syngas Conversion Enabled by Precise Charge Transport Modulation.
Small. 2023 Aug;19(35):e2300804. doi: 10.1002/smll.202300804. Epub 2023 May 14.
2
Robust and Stable Atomically Precise Metal Nanoclusters Mediated Solar Water Splitting.
Small. 2023 Sep;19(36):e2302372. doi: 10.1002/smll.202302372. Epub 2023 Apr 28.
3
Identifying and Removing the Interfacial States in Metal-Oxide-Semiconductor Schottky Si Photoanodes for the Highest Fill Factor.
J Am Chem Soc. 2022 Sep 28;144(38):17540-17548. doi: 10.1021/jacs.2c06748. Epub 2022 Sep 14.
4
Bipolar charge collecting structure enables overall water splitting on ferroelectric photocatalysts.
Nat Commun. 2022 Jul 22;13(1):4245. doi: 10.1038/s41467-022-32002-y.
5
Recent advances and perspectives for solar-driven water splitting using particulate photocatalysts.
Chem Soc Rev. 2022 May 10;51(9):3561-3608. doi: 10.1039/d1cs01182k.
6
In situ Irradiated XPS Investigation on S-Scheme TiO @ZnIn S Photocatalyst for Efficient Photocatalytic CO Reduction.
Small. 2021 Oct;17(41):e2103447. doi: 10.1002/smll.202103447. Epub 2021 Sep 12.
7
Stand-Alone CdS Nanocrystals for Photocatalytic CO Reduction with High Efficiency and Selectivity.
ACS Appl Mater Interfaces. 2021 Jun 9;13(22):26573-26580. doi: 10.1021/acsami.1c03606. Epub 2021 May 26.
8
Precise Tuning of Coordination Positions for Transition-Metal Ions via Layer-by-Layer Assembly To Enhance Solar Hydrogen Production.
ACS Appl Mater Interfaces. 2020 Jan 29;12(4):4373-4384. doi: 10.1021/acsami.9b14543. Epub 2020 Jan 21.
9
In Situ Grown Monolayer N-Doped Graphene on CdS Hollow Spheres with Seamless Contact for Photocatalytic CO Reduction.
Adv Mater. 2019 Oct;31(42):e1902868. doi: 10.1002/adma.201902868. Epub 2019 Sep 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验