Yan Xian, Dong Jun-Hao, Zheng Jing-Ying, Wu Yue, Xiao Fang-Xing
College of Materials Science and Engineering, Fuzhou University New Campus Fujian Province 350108 China
Chem Sci. 2024 Jan 9;15(8):2898-2913. doi: 10.1039/d3sc05761e. eCollection 2024 Feb 22.
The core factors dictating the photocatalysis efficiency are predominantly centered on controllable modulation of anisotropic spatial charge transfer/separation and regulating vectorial charge transport pathways. Nonetheless, the sluggish charge transport kinetics and incapacity of precisely tuning interfacial charge flow at the nanoscale level are still the primary dilemma. Herein, we conceptually demonstrate the elaborate design of a cascade charge transport chain over transition metal chalcogenide-insulating polymer-cocatalyst (TIC) photosystems a progressive self-assembly strategy. The intermediate ultrathin non-conjugated insulating polymer layer, , poly(diallyl-dimethylammonium chloride) (PDDA), functions as the interfacial electron relay medium, and simultaneously, outermost co-catalysts serve as the terminal "electron reservoirs", synergistically contributing to the charge transport cascade pathway and substantially boosting the interfacial charge separation. We found that the insulating polymer mediated unidirectional charge transfer cascade is universal for a large variety of metal or non-metal reducing co-catalysts (Au, Ag, Pt, Ni, Co, Cu, NiSe, CoSe, and CuSe). More intriguingly, such peculiar charge flow characteristics endow the self-assembled TIC photosystems with versatile visible-light-driven photoredox catalysis towards photocatalytic hydrogen generation, anaerobic selective organic transformation, and CO-to-fuel conversion. Our work would provide new inspiration for smartly mediating spatial vectorial charge transport towards emerging solar energy conversion.
决定光催化效率的核心因素主要集中在对各向异性空间电荷转移/分离的可控调制以及调节矢量电荷传输途径上。尽管如此,缓慢的电荷传输动力学以及在纳米尺度上精确调节界面电荷流动的能力不足仍然是主要难题。在此,我们从概念上展示了一种过渡金属硫族化物-绝缘聚合物-助催化剂(TIC)光系统的级联电荷传输链的精心设计——一种渐进的自组装策略。中间的超薄非共轭绝缘聚合物层,即聚二烯丙基二甲基氯化铵(PDDA),充当界面电子中继介质,同时,最外层的助催化剂充当终端“电子库”,协同促进电荷传输级联途径并大幅提高界面电荷分离。我们发现绝缘聚合物介导的单向电荷转移级联对于多种金属或非金属还原助催化剂(Au、Ag、Pt、Ni、Co、Cu、NiSe、CoSe和CuSe)具有普遍性。更有趣的是,这种独特的电荷流动特性赋予自组装的TIC光系统在可见光驱动的光氧化还原催化方面具有多功能性,可用于光催化产氢、厌氧选择性有机转化以及CO到燃料的转化。我们的工作将为巧妙介导空间矢量电荷传输以实现新兴太阳能转化提供新的灵感。