Stuber Annina, Cavaccini Anna, Manole Andreea, Burdina Anna, Massoud Yassine, Patriarchi Tommaso, Karayannis Theofanis, Nakatsuka Nako
Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich CH-8092, Switzerland.
Laboratory of Neural Circuit Assembly, Brain Research Institute, University of Zurich, Zurich CH-8057, Switzerland.
ACS Meas Sci Au. 2023 Nov 22;4(1):92-103. doi: 10.1021/acsmeasuresciau.3c00047. eCollection 2024 Feb 21.
Aptamer-functionalized biosensors exhibit high selectivity for monitoring neurotransmitters in complex environments. We translated nanoscale aptamer-modified nanopipette sensors to detect endogenous dopamine release and . These sensors employ quartz nanopipettes with nanoscale pores (ca. 10 nm diameter) that are functionalized with aptamers that enable the selective capture of dopamine through target-specific conformational changes. The dynamic behavior of aptamer structures upon dopamine binding leads to the rearrangement of surface charge within the nanopore, resulting in measurable changes in ionic current. To assess sensor performance in real time, we designed a fluidic platform to characterize the temporal dynamics of nanopipette sensors. We then conducted differential biosensing by deploying control sensors modified with nonspecific DNA alongside dopamine-specific sensors in biological milieu. Our results confirm the functionality of aptamer-modified nanopipettes for direct measurements in undiluted complex fluids, specifically in the culture media of human-induced pluripotent stem cell-derived dopaminergic neurons. Moreover, sensor implantation and repeated measurements in acute brain slices was possible, likely owing to the protected sensing area inside nanoscale DNA-filled orifices, minimizing exposure to nonspecific interferents and preventing clogging. Further, differential recordings of endogenous dopamine released through electrical stimulation in the dorsolateral striatum demonstrate the potential of aptamer-modified nanopipettes for recordings with unprecedented spatial resolution and reduced tissue damage.
适配体功能化生物传感器在复杂环境中监测神经递质时表现出高选择性。我们将纳米级适配体修饰的纳米移液器传感器进行了转化,以检测内源性多巴胺释放。这些传感器采用具有纳米级孔隙(直径约10纳米)的石英纳米移液器,孔隙用适配体功能化,通过目标特异性构象变化实现对多巴胺的选择性捕获。多巴胺结合后适配体结构的动态行为导致纳米孔内表面电荷重新排列,从而使离子电流发生可测量的变化。为了实时评估传感器性能,我们设计了一个流体平台来表征纳米移液器传感器的时间动态。然后,我们在生物环境中通过将用非特异性DNA修饰的对照传感器与多巴胺特异性传感器一起部署来进行差分生物传感。我们的结果证实了适配体修饰的纳米移液器在未稀释的复杂流体中进行直接测量的功能,特别是在人诱导多能干细胞衍生的多巴胺能神经元的培养基中。此外,在急性脑片中进行传感器植入和重复测量是可行的,这可能是由于纳米级充满DNA的孔口内受保护的传感区域,最大限度地减少了对非特异性干扰物的暴露并防止堵塞。此外,通过对背外侧纹状体进行电刺激释放的内源性多巴胺的差分记录表明,适配体修饰的纳米移液器具有以前所未有的空间分辨率进行记录并减少组织损伤的潜力。