Suppr超能文献

脑电图的软件模拟

Software simulation of the EEG.

作者信息

Narasimhan S V, Narayana Dutt D

出版信息

J Biomed Eng. 1985 Oct;7(4):275-81. doi: 10.1016/0141-5425(85)90054-8.

Abstract

The literature contains many examples of digital procedures for the analytical treatment of electroencephalograms, but there is as yet no standard by which those techniques may be judged or compared. This paper proposes one method of generating an EEG, based on a computer program for Zetterberg's simulation. It is assumed that the statistical properties of an EEG may be represented by stationary processes having rational transfer functions and achieved by a system of software filters and random number generators. The model represents neither the neurological mechanism response for generating the EEG, nor any particular type of EEG record; transient phenomena such as spikes, sharp waves and alpha bursts also are excluded. The basis of the program is a valid 'partial' statistical description of the EEG; that description is then used to produce a digital representation of a signal which, if plotted sequentially, might or might not by chance resemble an EEG, that is unimportant. What is important is that the statistical properties of the series remain those of a real EEG; it is in this sense that the output is a simulation of the EEG. There is considerable flexibility in the form of the output, i.e. its alpha, beta and delta content, which may be selected by the user, the same selected parameters always producing the same statistical output. The filtered outputs from the random number sequences may be scaled to provide realistic power distributions in the accepted EEG frequency bands and then summed to create a digital output signal, the 'stationary EEG'.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献中有许多关于脑电图分析处理的数字程序示例,但目前尚无用于评判或比较这些技术的标准。本文基于泽特伯格模拟的计算机程序,提出了一种生成脑电图的方法。假定脑电图的统计特性可用具有有理传递函数的平稳过程表示,并通过软件滤波器和随机数生成器系统来实现。该模型既不代表产生脑电图的神经机制反应,也不代表任何特定类型的脑电图记录;诸如尖峰、锐波和阿尔法波群等瞬态现象也被排除在外。该程序的基础是对脑电图有效的“部分”统计描述;然后利用该描述生成一个信号的数字表示,若将其按顺序绘制,可能碰巧类似脑电图,也可能不类似,这并不重要。重要的是该序列的统计特性仍与真实脑电图的统计特性相同;正是在这个意义上,输出是脑电图的模拟。输出形式具有相当大的灵活性,即其阿尔法、贝塔和德尔塔成分,用户可以选择,相同的选定参数总是产生相同的统计输出。来自随机数序列的滤波输出可以进行缩放,以在公认的脑电图频带中提供逼真的功率分布,然后求和以创建一个数字输出信号,即“平稳脑电图”。(摘要截取自250字)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验