Titov Evgenii
Institute of Chemistry, Theoretical Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany.
ACS Omega. 2024 Feb 9;9(7):8520-8532. doi: 10.1021/acsomega.3c09900. eCollection 2024 Feb 20.
Assemblies of photochromic molecules feature exciton states, which govern photochemical and photophysical processes in multichromophoric systems. Understanding the photoinduced dynamics of the assemblies requires nonadiabatic treatment involving multiple exciton states and numerous nuclear degrees of freedom, thus posing a challenge for simulations. In this work, we address this challenge for aggregates of azobenzene, a prototypical molecular switch, performing on-the-fly surface hopping calculations combined with semiempirical configuration interaction electronic structure and augmented with transition density matrix analysis to characterize exciton evolution. Specifically, we consider excitation of azobenzene tetramers in the nπ* absorption band located in the visible (blue) part of the electromagnetic spectrum, thus extending our recent work on dynamics after ππ* excitation corresponding to the ultraviolet region [Titov, , , 13678-13688]. We find that the nπ* excitons, which are initially strongly localized by ground-state conformational disorder, undergo further (very strong) localization during short-time photodynamics. This excited-state localization process is extremely ultrafast, occurring within the first 10 fs of photodynamics. We observe virtually no exciton transfer of the localized excitons in the nπ* manifold. However, the transfer may occur via secondary pathways involving ππ* states or the ground state. Moreover, we find that the nπ* quantum yields of the -to- isomerization are reduced in the aggregated state.
光致变色分子的聚集体具有激子态,这些激子态控制着多发色团体系中的光化学和光物理过程。理解聚集体的光诱导动力学需要涉及多个激子态和众多核自由度的非绝热处理,因此对模拟提出了挑战。在这项工作中,我们针对典型分子开关偶氮苯的聚集体应对这一挑战,进行实时表面跳跃计算,并结合半经验组态相互作用电子结构,并用跃迁密度矩阵分析进行补充,以表征激子演化。具体而言,我们考虑在电磁光谱可见光(蓝色)部分的nπ吸收带中偶氮苯四聚体的激发,从而扩展了我们最近关于对应于紫外区域的ππ激发后的动力学研究[蒂托夫,,,13678 - 13688]。我们发现,最初因基态构象无序而强烈局域化的nπ激子,在短时光动力学过程中会经历进一步(非常强烈)的局域化。这种激发态局域化过程极其超快,发生在光动力学的最初10飞秒内。我们观察到在nπ多重态中局域激子几乎没有激子转移。然而,转移可能通过涉及ππ态或基态的次级途径发生。此外,我们发现聚集态下 - 到 - 异构化的nπ量子产率降低。