Suppr超能文献

可见光诱导的偶氮苯聚集体中的激子动力学和光致异构化:表面跳跃/半经验组态相互作用分子动力学模拟的见解

Visible Light Induced Exciton Dynamics and -to- Isomerization in Azobenzene Aggregates: Insights from Surface Hopping/Semiempirical Configuration Interaction Molecular Dynamics Simulations.

作者信息

Titov Evgenii

机构信息

Institute of Chemistry, Theoretical Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany.

出版信息

ACS Omega. 2024 Feb 9;9(7):8520-8532. doi: 10.1021/acsomega.3c09900. eCollection 2024 Feb 20.

Abstract

Assemblies of photochromic molecules feature exciton states, which govern photochemical and photophysical processes in multichromophoric systems. Understanding the photoinduced dynamics of the assemblies requires nonadiabatic treatment involving multiple exciton states and numerous nuclear degrees of freedom, thus posing a challenge for simulations. In this work, we address this challenge for aggregates of azobenzene, a prototypical molecular switch, performing on-the-fly surface hopping calculations combined with semiempirical configuration interaction electronic structure and augmented with transition density matrix analysis to characterize exciton evolution. Specifically, we consider excitation of azobenzene tetramers in the nπ* absorption band located in the visible (blue) part of the electromagnetic spectrum, thus extending our recent work on dynamics after ππ* excitation corresponding to the ultraviolet region [Titov, , , 13678-13688]. We find that the nπ* excitons, which are initially strongly localized by ground-state conformational disorder, undergo further (very strong) localization during short-time photodynamics. This excited-state localization process is extremely ultrafast, occurring within the first 10 fs of photodynamics. We observe virtually no exciton transfer of the localized excitons in the nπ* manifold. However, the transfer may occur via secondary pathways involving ππ* states or the ground state. Moreover, we find that the nπ* quantum yields of the -to- isomerization are reduced in the aggregated state.

摘要

光致变色分子的聚集体具有激子态,这些激子态控制着多发色团体系中的光化学和光物理过程。理解聚集体的光诱导动力学需要涉及多个激子态和众多核自由度的非绝热处理,因此对模拟提出了挑战。在这项工作中,我们针对典型分子开关偶氮苯的聚集体应对这一挑战,进行实时表面跳跃计算,并结合半经验组态相互作用电子结构,并用跃迁密度矩阵分析进行补充,以表征激子演化。具体而言,我们考虑在电磁光谱可见光(蓝色)部分的nπ吸收带中偶氮苯四聚体的激发,从而扩展了我们最近关于对应于紫外区域的ππ激发后的动力学研究[蒂托夫,,,13678 - 13688]。我们发现,最初因基态构象无序而强烈局域化的nπ激子,在短时光动力学过程中会经历进一步(非常强烈)的局域化。这种激发态局域化过程极其超快,发生在光动力学的最初10飞秒内。我们观察到在nπ多重态中局域激子几乎没有激子转移。然而,转移可能通过涉及ππ态或基态的次级途径发生。此外,我们发现聚集态下 - 到 - 异构化的nπ量子产率降低。

相似文献

2
Frenkel exciton photodynamics of self-assembled monolayers of azobiphenyls.
J Chem Phys. 2022 Oct 28;157(16):161101. doi: 10.1063/5.0122109.
3
The Role of Double Excitations in Exciton Dynamics of Multiazobenzenes: Trisazobenzenophane as a Test Case.
J Phys Chem Lett. 2024 Jul 25;15(29):7482-7488. doi: 10.1021/acs.jpclett.4c01608. Epub 2024 Jul 16.
4
Nonadiabatic Dynamics Simulation of the Wavelength-Dependent Photochemistry of Azobenzene Excited to the nπ* and ππ* Excited States.
J Am Chem Soc. 2020 Dec 9;142(49):20680-20690. doi: 10.1021/jacs.0c09056. Epub 2020 Nov 23.
6
Nonadiabatic excited-state molecular dynamics: modeling photophysics in organic conjugated materials.
Acc Chem Res. 2014 Apr 15;47(4):1155-64. doi: 10.1021/ar400263p. Epub 2014 Mar 27.
7
First-Principles Nonadiabatic Dynamics Simulation of Azobenzene Photodynamics in Solutions.
J Chem Theory Comput. 2021 May 11;17(5):3019-3030. doi: 10.1021/acs.jctc.1c00105. Epub 2021 Apr 21.
9
Photodynamics of oxybenzone sunscreen: Nonadiabatic dynamics simulations.
J Chem Phys. 2016 Aug 21;145(7):074308. doi: 10.1063/1.4961261.

引用本文的文献

1
Surface Hopping Molecular Dynamics Simulations for Photochemistry Involving Pyrene and CHCl.
J Phys Chem A. 2025 Aug 7;129(31):7102-7114. doi: 10.1021/acs.jpca.5c02583. Epub 2025 Jul 24.
2
Photoisomerization Dynamics of Azo-Escitalopram Using Surface Hopping and a Semiempirical Method.
J Phys Chem B. 2025 Jan 9;129(1):385-397. doi: 10.1021/acs.jpcb.4c06924. Epub 2024 Dec 21.
3
The Role of Double Excitations in Exciton Dynamics of Multiazobenzenes: Trisazobenzenophane as a Test Case.
J Phys Chem Lett. 2024 Jul 25;15(29):7482-7488. doi: 10.1021/acs.jpclett.4c01608. Epub 2024 Jul 16.

本文引用的文献

1
Visualizing and characterizing excited states from time-dependent density functional theory.
Phys Chem Chem Phys. 2024 Jan 31;26(5):3755-3794. doi: 10.1039/d3cp04226j.
2
A Practical Approach to Wave Function Propagation, Hopping Probabilities, and Time Steps in Surface Hopping Calculations.
J Chem Theory Comput. 2023 May 23;19(10):2744-2757. doi: 10.1021/acs.jctc.3c00126. Epub 2023 May 2.
3
Frenkel exciton photodynamics of self-assembled monolayers of azobiphenyls.
J Chem Phys. 2022 Oct 28;157(16):161101. doi: 10.1063/5.0122109.
4
Effect of conformational disorder on exciton states of an azobenzene aggregate.
Phys Chem Chem Phys. 2022 Oct 12;24(39):24002-24006. doi: 10.1039/d2cp02774g.
6
Exciton Dissociation in a Model Organic Interface: Excitonic State-Based Surface Hopping versus Multiconfigurational Time-Dependent Hartree.
J Phys Chem Lett. 2022 Aug 11;13(31):7105-7112. doi: 10.1021/acs.jpclett.2c01928. Epub 2022 Jul 28.
7
9
Towards low-energy-light-driven bistable photoswitches: ortho-fluoroaminoazobenzenes.
Photochem Photobiol Sci. 2022 Feb;21(2):159-173. doi: 10.1007/s43630-021-00145-4. Epub 2021 Dec 10.
10
Surface Hopping Dynamics with the Frenkel Exciton Model in a Semiempirical Framework.
J Chem Theory Comput. 2021 Dec 14;17(12):7373-7383. doi: 10.1021/acs.jctc.1c00942. Epub 2021 Nov 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验