Suppr超能文献

一种真菌代谢调节因子是金黄色葡萄球菌腹腔内共感染期间感染协同作用的基础。

A fungal metabolic regulator underlies infectious synergism during - aureus intra-abdominal co-infection.

作者信息

Paul Saikat, Todd Olivia A, Eichelberger Kara R, Tkaczyk Christine, Sellman Bret R, Noverr Mairi C, Cassat James E, Fidel Paul L, Peters Brian M

出版信息

bioRxiv. 2024 Feb 15:2024.02.15.580531. doi: 10.1101/2024.02.15.580531.

Abstract

and are two commonly associated pathogens that cause nosocomial infections with high morbidity and mortality. Our prior and current work using a murine model of polymicrobial intra-abdominal infection (IAI) uncovered synergistic lethality that was driven by -induced upregulation of functional ⍺-toxin leading to polymicrobial sepsis and organ damage. In order to determine the candidal effector(s) mediating enhanced virulence, an unbiased screen of transcription factor mutants was undertaken and revealed that Δ/Δ failed to drive augmented ⍺-toxin or lethal synergism during co-infection. Using a combination of transcriptional and phenotypic profiling approaches, was shown to regulate genes involved in pentose metabolism, including and that contribute to fungal ribose catabolism and uptake, respectively. Subsequent experiments revealed that ribose inhibited the staphylococcal quorum sensing system and concomitantly repressed toxicity. Unlike wild-type , Δ/Δ was unable to effectively utilize ribose during co-culture or co-infection leading to exogenous ribose accumulation and repression. Forced expression of and in the Δ/Δ mutant fully restored pathogenicity during co-infection. Collectively, our results detail the interwoven complexities of cross-kingdom interactions and highlight how intermicrobial metabolism impacts polymicrobial disease pathogenesis with devastating consequences for the host.

摘要

[具体两种病原体名称]和[具体两种病原体名称]是两种常见的相关病原体,可导致医院感染,发病率和死亡率很高。我们之前和目前使用多微生物腹腔内感染(IAI)小鼠模型的研究发现了协同致死性,这是由[具体病原体名称]诱导功能性α-毒素上调所驱动的,导致多微生物败血症和器官损伤。为了确定介导增强毒力的念珠菌效应因子,我们对[具体念珠菌名称]转录因子突变体进行了无偏向筛选,结果显示[具体念珠菌名称]Δ/Δ在共感染期间无法驱动α-毒素增加或致死性协同作用。通过转录和表型分析方法相结合,发现[具体念珠菌名称]可调节参与戊糖代谢的基因,包括[具体基因名称1]和[具体基因名称2],它们分别有助于真菌核糖分解代谢和摄取。随后的实验表明,核糖抑制葡萄球菌群体感应系统,并同时抑制毒性。与野生型[具体念珠菌名称]不同,[具体念珠菌名称]Δ/Δ在共培养或共感染期间无法有效利用核糖,导致外源核糖积累和[具体相关物质名称]抑制。在[具体念珠菌名称]Δ/Δ突变体中强制表达[具体基因名称1]和[具体基因名称2]可在共感染期间完全恢复致病性。总的来说,我们的结果详细阐述了跨界相互作用的交织复杂性,并强调了微生物间代谢如何影响多微生物疾病发病机制,对宿主造成毁灭性后果。

相似文献

6
Metabolic Adaptations During and Co-Infection.在 和 共感染期间的代谢适应。
Front Immunol. 2021 Dec 8;12:797550. doi: 10.3389/fimmu.2021.797550. eCollection 2021.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验