Barra Beatrice, Kumar Ritesh, Gopinath Chaitanya, Mirzakhalili Ehsan, Lempka Scott F, Gaunt Robert A, Fisher Lee E
Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.
Neuroscience Institute, New York University Langone Health, New York, USA.
bioRxiv. 2024 Feb 18:2024.02.14.580219. doi: 10.1101/2024.02.14.580219.
Regaining sensory feedback is pivotal for people living with limb amputation. Electrical stimulation of sensory fibers in peripheral nerves has been shown to restore focal percepts in the missing limb. However, conventional rectangular current pulses induce sensations often described as unnatural. This is likely due to the synchronous and periodic nature of activity evoked by these pulses. Here we introduce a fast-oscillating amplitude-modulated sinusoidal (FAMS) stimulation waveform that desynchronizes evoked neural activity. We used a computational model to show that sinusoidal waveforms evoke asynchronous and irregular firing and that firing patterns are frequency dependent. We designed the FAMS waveform to leverage both low- and high-frequency effects and found that membrane non-linearities enhance neuron-specific differences when exposed to FAMS. We implemented this waveform in a feline model of peripheral nerve stimulation and demonstrated that FAMS-evoked activity is more asynchronous than activity evoked by rectangular pulses, while being easily controllable with simple stimulation parameters. These results represent an important step towards biomimetic stimulation strategies useful for clinical applications to restore sensory feedback.
恢复感觉反馈对肢体截肢者至关重要。已证明对周围神经中的感觉纤维进行电刺激可恢复缺失肢体中的局部感知。然而,传统的矩形电流脉冲所诱发的感觉通常被描述为不自然。这可能是由于这些脉冲所诱发活动的同步性和周期性。在此,我们引入一种快速振荡的调幅正弦(FAMS)刺激波形,它能使诱发的神经活动去同步化。我们使用计算模型表明,正弦波形会诱发异步且不规则的放电,并且放电模式与频率相关。我们设计FAMS波形以利用低频和高频效应,并且发现当暴露于FAMS时,膜非线性会增强神经元特异性差异。我们在周围神经刺激的猫模型中实现了这种波形,并证明FAMS诱发的活动比矩形脉冲诱发的活动更异步,同时通过简单的刺激参数就易于控制。这些结果代表了朝着用于临床应用以恢复感觉反馈的仿生刺激策略迈出的重要一步。