Formento Emanuele, D'Anna Edoardo, Gribi Sandra, Lacour Stéphanie P, Micera Silvestro
Bertarelli Foundation Chair in Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. Equal contribution.
J Neural Eng. 2020 Aug 4;17(4):046019. doi: 10.1088/1741-2552/aba4fc.
Electrical stimulation is an effective method for artificially modulating the activity of the nervous system. However, current stimulation paradigms fail to reproduce the stochastic and asynchronous properties of natural neural activity. Here, we introduce a novel biomimetic stimulation (BioS) strategy that overcomes these limitations.
We hypothesized that high-frequency amplitude-modulated bursts of stimulation could induce asynchronous neural firings by distributing recruitment over the duration of a burst, without sacrificing the ability to precisely control neural activity. We tested this hypothesis using computer simulations and ex vivo experiments.
We found that BioS bursts induce asynchronous, stochastic, yet controllable, neural activity. We established that varying the amplitude, duration, and repetition frequency of a BioS burst enables graded modulation of the number of recruited fibers, their firing rate, and the synchronicity of their responses.
These results demonstrate an unprecedented level of control over artificially induced neural activity, enabling the design of next-generation BioS paradigms with potentially profound consequences for the field of neurostimulation.
电刺激是人工调节神经系统活动的有效方法。然而,目前的刺激模式无法重现自然神经活动的随机性和异步性。在此,我们引入一种新型的仿生刺激(BioS)策略,以克服这些局限性。
我们假设高频调幅刺激脉冲串可通过在脉冲串持续时间内分散募集来诱导异步神经放电,同时又不牺牲精确控制神经活动的能力。我们使用计算机模拟和离体实验来验证这一假设。
我们发现BioS脉冲串可诱导异步、随机但可控的神经活动。我们确定,改变BioS脉冲串的幅度、持续时间和重复频率能够对募集纤维的数量、其放电率及其反应的同步性进行分级调制。
这些结果证明了对人工诱导神经活动的控制达到了前所未有的水平,为下一代BioS模式的设计提供了可能,这可能会对神经刺激领域产生深远影响。