Suppr超能文献

在基因组、外显子组和基因panel测序数据集中诊断脊髓性肌萎缩症漏诊病例。

Diagnosing missed cases of spinal muscular atrophy in genome, exome, and panel sequencing datasets.

作者信息

Weisburd Ben, Sharma Rakshya, Pata Villem, Reimand Tiia, Ganesh Vijay S, Austin-Tse Christina, Osei-Owusu Ikeoluwa, O'Heir Emily, O'Leary Melanie, Pais Lynn, Stafki Seth A, Daugherty Audrey L, Folland Chiara, Perić Stojan, Fahmy Nagia, Udd Bjarne, Horakova Magda, Łusakowska Anna, Manoj Rajanna, Nalini Atchayaram, Karcagi Veronika, Polavarapu Kiran, Lochmüller Hanns, Horvath Rita, Bönnemann Carsten G, Donkervoort Sandra, Haliloğlu Göknur, Herguner Ozlem, Kang Peter B, Ravenscroft Gianina, Laing Nigel, Scott Hamish S, Töpf Ana, Straub Volker, Pajusalu Sander, Õunap Katrin, Tiao Grace, Rehm Heidi L, O'Donnell-Luria Anne

机构信息

Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

出版信息

medRxiv. 2024 Jun 29:2024.02.11.24302646. doi: 10.1101/2024.02.11.24302646.

Abstract

Spinal muscular atrophy (SMA) is a genetic disorder that causes progressive degeneration of lower motor neurons and the subsequent loss of muscle function throughout the body. It is the second most common recessive disorder in individuals of European descent and is present in all populations. Accurate tools exist for diagnosing SMA from genome sequencing data. However, there are no publicly available tools for GRCh38-aligned data from panel or exome sequencing assays which continue to be used as first line tests for neuromuscular disorders. This deficiency creates a critical gap in our ability to diagnose SMA in large existing rare disease cohorts, as well as newly sequenced exome and panel datasets. We therefore developed and extensively validated a new tool - SMA Finder - that can diagnose SMA not only in genome, but also exome and panel sequencing samples aligned to GRCh37, GRCh38, or T2T-CHM13. It works by evaluating aligned reads that overlap the c.840 position of and in order to detect the most common molecular causes of SMA. We applied SMA Finder to 16,626 exomes and 3,911 genomes from heterogeneous rare disease cohorts sequenced at the Broad Institute Center for Mendelian Genomics as well as 1,157 exomes and 8,762 panel sequencing samples from Tartu University Hospital. SMA Finder correctly identified all 16 known SMA cases and reported nine novel diagnoses which have since been confirmed by clinical testing, with another four novel diagnoses undergoing validation. Notably, out of the 29 total SMA positive cases, 23 had an initial clinical diagnosis of muscular dystrophy, congenital myasthenic syndrome, or myopathy. This underscored the frequency with which SMA can be misdiagnosed as other neuromuscular disorders and confirmed the utility of using SMA Finder to reanalyze phenotypically diverse neuromuscular disease cohorts. Finally, we evaluated SMA Finder on 198,868 individuals that had both exome and genome sequencing data within the UK Biobank (UKBB) and found that SMA Finder's overall false positive rate was less than 1 / 200,000 exome samples, and its positive predictive value (PPV) was 97%. We also observed 100% concordance between UKBB exome and genome calls. This analysis showed that, even though it is located within a segmental duplication, the most common causal variant for SMA can be detected with comparable accuracy to monogenic disease variants in non-repetitive regions. Additionally, the high PPV demonstrated by SMA Finder, the existence of treatment options for SMA in which early diagnosis is imperative for therapeutic benefit, as well as widespread availability of clinical confirmatory testing for SMA, warrants the addition of to the ACMG list of genes with reportable secondary findings after genome and exome sequencing.

摘要

脊髓性肌萎缩症(SMA)是一种遗传性疾病,会导致下运动神经元进行性退化,进而使全身肌肉功能丧失。它是欧洲血统个体中第二常见的隐性疾病,在所有人群中都有出现。现有从基因组测序数据诊断SMA的准确工具。然而,对于来自基因panel或外显子组测序检测且与GRCh38比对的数据,尚无公开可用的工具,而这些检测仍被用作神经肌肉疾病的一线检测方法。这一缺陷在我们诊断现有大型罕见病队列以及新测序的外显子组和基因panel数据集的SMA能力方面造成了关键差距。因此,我们开发并广泛验证了一种新工具——SMA Finder,它不仅可以诊断基因组中的SMA,还能诊断与GRCh37、GRCh38或T2T-CHM13比对的外显子组和基因panel测序样本中的SMA。它通过评估与 和 的c.840位置重叠的比对 reads来检测SMA最常见的分子病因。我们将SMA Finder应用于布罗德研究所孟德尔基因组学中心测序的来自异质性罕见病队列的16626个外显子组和3911个基因组,以及塔尔图大学医院的1157个外显子组和8762个基因panel测序样本。SMA Finder正确识别了所有16例已知的SMA病例,并报告了9例新诊断病例,这些病例后来已通过临床检测得到证实,另有4例新诊断病例正在进行验证。值得注意的是,在总共29例SMA阳性病例中,有23例最初临床诊断为肌肉萎缩症、先天性肌无力综合征或肌病。这突出了SMA被误诊为其他神经肌肉疾病的频率,并证实了使用SMA Finder重新分析表型多样的神经肌肉疾病队列的实用性。最后,我们在英国生物银行(UKBB)中对198868名同时拥有外显子组和基因组测序数据的个体进行了评估,发现SMA Finder的总体假阳性率低于1/200000个外显子组样本(此处原文“1 / 200,000 exome samples”似乎表述有误,推测可能应是“1/200000个外显子组样本”),其阳性预测值(PPV)为97%。我们还观察到UKBB外显子组和基因组检测结果之间100%的一致性。该分析表明,尽管SMA最常见的致病变异位于一个节段性重复区域内,但与非重复区域的单基因疾病变异相比,仍能以相当的准确性检测到。此外,SMA Finder显示出的高PPV、存在早期诊断对治疗益处至关重要的SMA治疗方案,以及SMA临床确诊检测的广泛可用性(此处原文“clinical confirmatory testing for SMA”表述较模糊,推测可能是确诊检测之类意思),使得有必要将 (此处原文缺失基因名)添加到美国医学遗传学与基因组学学会(ACMG)在基因组和外显子组测序后具有可报告次要发现的基因列表中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验