Suppr超能文献

腔静脉-心房连接部血流中中心静脉导管置管影响的数值研究。

Numerical Study on the Impact of Central Venous Catheter Placement on Blood Flow in the Cavo-Atrial Junction.

机构信息

Department of Biomedical Engineering, The Pennsylvania State University, 122 Chemical and Biomedical Engineering Building, University Park, PA, 16802-4400, USA.

Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA.

出版信息

Ann Biomed Eng. 2024 May;52(5):1378-1392. doi: 10.1007/s10439-024-03463-7. Epub 2024 Feb 26.

Abstract

An in silico study is performed to investigate fluid dynamic effects of central venous catheter (CVC) placement within patient-specific cavo-atrial junctions. Prior studies show the CVC infusing a liquid, but this study focuses on the placement without any liquid emerging from the CVC. A 7 or 15-French double-lumen CVC is placed virtually in two patient-specific models; the CVC tip location is altered to understand its effect on the venous flow field. Results show that the CVC impact is trivial on flow in the superior vena cava when the catheter-to-vein ratio ranges from 0.15 to 0.33. Results further demonstrate that when the CVC tip is directly in the right atrium, flow vortices in the right atrium result in elevated wall shear stress near the tip hole. A recirculation region characterizes a spatially variable flow field inside the CVC side hole. Furthermore, flow stagnation is present near the internal side hole corners but an elevated wall shear stress near the curvature of the side hole's exit. These results suggest that optimal CVC tip location is within the superior vena cava, so as to lower the potential for platelet activation due to elevated shear stresses and that CVC geometry and location depth in the central vein significantly influences the local CVC fluid dynamics. A thrombosis model also shows thrombus formation at the side hole and tip hole. After modifying the catheter design, the hemodynamics change, which alter thrombus formation. Future studies are warranted to study CVC design and placement location in an effort to minimize CVC-induced thrombosis incidence.

摘要

进行了一项计算机模拟研究,以调查中心静脉导管(CVC)在患者特定的腔静脉-心房交界处的放置对流体动力学的影响。先前的研究表明 CVC 会注入液体,但本研究侧重于没有任何液体从 CVC 中流出的放置情况。在两个患者特定的模型中虚拟放置了 7 或 15-French 双腔 CVC;改变 CVC 尖端的位置,以了解其对静脉流场的影响。结果表明,当导管与静脉的比例在 0.15 到 0.33 之间时,CVC 对腔静脉的流动影响微不足道。结果进一步表明,当 CVC 尖端直接位于右心房时,右心房内的流动涡流会导致尖端孔附近的壁面剪切应力升高。在 CVC 侧孔内会出现一个再循环区域,其特征是空间变化的流场。此外,在内部侧孔角附近存在流动停滞,但在侧孔出口的曲率附近存在壁面剪切应力升高。这些结果表明,CVC 尖端的最佳位置在腔静脉内,以降低由于壁面剪切应力升高而导致血小板激活的潜在风险,并且 CVC 的几何形状和在中心静脉内的位置深度会显著影响局部 CVC 流体动力学。血栓形成模型还显示在侧孔和尖端孔处形成血栓。修改导管设计后,血流动力学发生变化,从而改变血栓形成。需要进一步研究以研究 CVC 的设计和放置位置,以尽量减少 CVC 引起的血栓形成发生率。

相似文献

1
Numerical Study on the Impact of Central Venous Catheter Placement on Blood Flow in the Cavo-Atrial Junction.
Ann Biomed Eng. 2024 May;52(5):1378-1392. doi: 10.1007/s10439-024-03463-7. Epub 2024 Feb 26.
2
Fluid Dynamic and in Vitro Blood Study to Understand Catheter-Related Thrombosis.
Cardiovasc Eng Technol. 2025 Feb;16(1):116-137. doi: 10.1007/s13239-024-00761-y. Epub 2024 Dec 2.
3
Risk factors for central venous catheter-related thrombosis in children: a retrospective analysis.
Blood Coagul Fibrinolysis. 2016 Jun;27(4):384-8. doi: 10.1097/MBC.0000000000000557.
4
[Ultrasound visualization of the guidewire and positioning of the central venous catheter : A prospective observational study].
Anaesthesist. 2020 Jul;69(7):489-496. doi: 10.1007/s00101-020-00794-7. Epub 2020 May 14.
6
Influence of Hemodialysis Catheter Insertion on Hemodynamics in the Central Veins.
J Biomech Eng. 2020 Sep 1;142(9). doi: 10.1115/1.4046500.
7
Minimal guidewire length for central venous catheterization of the right subclavian vein: A CT-based consecutive case series.
J Vasc Access. 2022 May;23(3):375-382. doi: 10.1177/1129729821993983. Epub 2021 Feb 14.

引用本文的文献

1
Fluid Dynamic and in Vitro Blood Study to Understand Catheter-Related Thrombosis.
Cardiovasc Eng Technol. 2025 Feb;16(1):116-137. doi: 10.1007/s13239-024-00761-y. Epub 2024 Dec 2.

本文引用的文献

1
Pulmonary artery blood flow dynamics in chronic thromboembolic pulmonary hypertension.
Sci Rep. 2023 Apr 20;13(1):6490. doi: 10.1038/s41598-023-33727-6.
2
Modeling flow in an anatomical cerebrovascular model with experimental validation.
Front Med Technol. 2023 Feb 23;5:1130201. doi: 10.3389/fmedt.2023.1130201. eCollection 2023.
3
The clinical spectrum of a nonsense mutation in : a case report.
J Int Med Res. 2022 Dec;50(12):3000605221140304. doi: 10.1177/03000605221140304.
5
Development of a computational fluid dynamic model to investigate the hemodynamic impact of REBOA.
Front Physiol. 2022 Oct 13;13:1005073. doi: 10.3389/fphys.2022.1005073. eCollection 2022.
6
Pathology of catheter-related complications: what we need to know and what should be discovered.
J Int Med Res. 2022 Oct;50(10):3000605221127890. doi: 10.1177/03000605221127890.
7
A fibrin enhanced thrombosis model for medical devices operating at low shear regimes or large surface areas.
PLoS Comput Biol. 2022 Oct 3;18(10):e1010277. doi: 10.1371/journal.pcbi.1010277. eCollection 2022 Oct.
8
Gene regulation by a protein translation factor at the single-cell level.
PLoS Comput Biol. 2022 May 6;18(5):e1010087. doi: 10.1371/journal.pcbi.1010087. eCollection 2022 May.
9
Computational Modeling of the Penn State Fontan Circulation Assist Device.
ASAIO J. 2022 Dec 1;68(12):1513-1522. doi: 10.1097/MAT.0000000000001708. Epub 2022 Apr 12.
10
Mathematical and Computational Modeling of Device-Induced Thrombosis.
Curr Opin Biomed Eng. 2021 Dec;20. doi: 10.1016/j.cobme.2021.100349. Epub 2021 Sep 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验