Department of Dermatology, University Hospital Zurich, Zurich, Switzerland.
Faculty of Medicine, University of Zurich, Zurich, Switzerland.
Methods Mol Biol. 2024;2849:73-86. doi: 10.1007/7651_2024_518.
Due to their full differentiation capacity in vitro, the culture of human primary keratinocytes (HPKs) represents a physiological model for answering basic biological and dermatological research questions, including those related to skin diseases and the investigation of treatment options. When modified with the CRISPR/Cas9 gene editing approach and cultivated in organotypic 3D epidermal equivalents (EEs), these human cells have the potential to replace established mouse models. However, even when cultivated on feeder cells, HPKs have only a low proliferation capacity in 2D culture, limiting their application potential. This is particularly true for CRISPR/Cas9-modified HPKs, whose generation commonly requires selection of targeted cells, negatively affecting their lifespan. Here, we describe a robust protocol for the rapid, simple, and efficient generation of single- and multi-gene CRISPR/Cas9 knockout HPKs by electroporation of ribonucleoprotein (RNP) complexes, which comprise one or multiple guide RNAs (gRNAs) and Cas9 protein. Unlike DNA transfection or virus-based targeting strategies, electroporation of RNPs represents a targeting approach that minimizes immunological and toxic side effects. Using efficient gRNAs results in the generation of HPKs with a high yield of knockout cells, allowing for their immediate use in experiments without requiring the laborious process of selecting targeted cells or maintaining a feeder cell culture. Furthermore, the use of RNPs and their delivery via electroporation minimizes off-target and other unspecific effects, preventing unintended genomic alterations. Most importantly, CRISPR/Cas9 knockout HPKs generated with this protocol have the ability to form a fully differentiated epidermis in 3D, thus facilitating the understanding of specific protein functions in a highly physiological human skin model. Alternatively, this approach proves valuable for generating models of mono- or polygenic skin diseases via knockouts, providing insights into the underlying molecular mechanisms and facilitating the development of novel therapeutic approaches.
由于其在体外的完全分化能力,人原代角质形成细胞(HPK)的培养代表了一种生理模型,可用于回答基础生物学和皮肤病学研究问题,包括与皮肤疾病相关的问题以及治疗选择的研究。当通过 CRISPR/Cas9 基因编辑方法进行修饰并在器官型 3D 表皮等效物(EE)中培养时,这些人细胞有可能替代已建立的小鼠模型。然而,即使在饲养细胞上培养,HPK 在 2D 培养中的增殖能力也很低,限制了其应用潜力。对于经 CRISPR/Cas9 修饰的 HPK 尤其如此,其生成通常需要对靶细胞进行选择,从而对其寿命产生负面影响。在这里,我们描述了一种快速、简单、高效的方法,通过核糖核蛋白(RNP)复合物的电穿孔来生成单基因和多基因 CRISPR/Cas9 敲除 HPK,该复合物包含一个或多个向导 RNA(gRNA)和 Cas9 蛋白。与 DNA 转染或基于病毒的靶向策略不同,RNP 的电穿孔代表了一种靶向方法,可最大程度地减少免疫和毒性副作用。使用有效的 gRNA 可产生具有高敲除细胞产量的 HPK,从而允许在无需费力地选择靶细胞或维持饲养细胞培养的情况下立即将其用于实验。此外,RNP 的使用及其通过电穿孔的递送可最大程度地减少脱靶和其他非特异性效应,防止非预期的基因组改变。最重要的是,使用该方案生成的 CRISPR/Cas9 敲除 HPK 具有在 3D 中形成完全分化表皮的能力,从而有助于在高度生理的人皮肤模型中理解特定蛋白质功能。或者,该方法通过敲除生成单基因或多基因皮肤病模型非常有价值,可深入了解潜在的分子机制并促进新型治疗方法的开发。