Heintz Chris, Schnödewind Lisa, Braubach Oliver, Kersten Hendrik, Benter Thorsten, Wißdorf Walter
Department of Physical and Theoretical Chemistry, University of Wuppertal, Gaussstraße 20, 42119 Wuppertal, Germany.
J Am Soc Mass Spectrom. 2024 Mar 6;35(3):508-517. doi: 10.1021/jasms.3c00383. Epub 2024 Feb 26.
Electrospray ionization (ESI) is one of the most prominent atmospheric pressure ionization techniques in modern mass spectrometry. It generates charged droplets from an analyte-containing solution as an initial step in the ionization process. Textbooks and the majority of the articles assume the entire droplet evaporation and release of bare analyte ions within the ionization chamber. However, non-mass-spectrometry-related literature and recent reports demonstrate droplet observation in regions of the vacuum systems of a variety of mass spectrometers. In this work, we report on the observation of large droplet fragments within the orthogonal acceleration stage of a Bruker micrOTOF by connecting an oscilloscope to an auxiliary ion current detector downstream of the acceleration stage. Moreover, we detected fragment debris even with the MCP TOF detector by evaluating individual TOF spectra. Droplet fragments appear as pronounced and intensive pulses of the ion current. This observation is clearly connected to ESI, as other atmospheric pressure ionization methods do not show this behavior. The recorded droplet signatures show clear dependencies on the ion source and transfer stage parameters. The existence of large and highly charged droplets may adversely affect or at least impact the analytical performance of the instrument due to space charge or complex heterogeneous chemical reactions. Furthermore, the penetration of large charged aggregates into the vacuum system explains the reported surface contamination after multipole stages. This contamination of critical components leads to substantially higher maintenance efforts.
电喷雾电离(ESI)是现代质谱中最突出的大气压电离技术之一。在电离过程的初始步骤中,它会从含分析物的溶液中产生带电液滴。教科书和大多数文章都假定整个液滴在电离室内蒸发并释放出裸分析物离子。然而,与质谱无关的文献和最近的报告表明,在各种质谱仪的真空系统区域中可以观察到液滴。在这项工作中,我们通过将示波器连接到布鲁克微型飞行时间质谱仪(Bruker micrOTOF)加速阶段下游的辅助离子电流检测器,报告了在其正交加速阶段内对大液滴碎片的观察。此外,通过评估单个飞行时间谱,我们甚至使用微通道板飞行时间(MCP TOF)检测器检测到了碎片残骸。液滴碎片表现为离子电流明显且强烈的脉冲。这一观察结果显然与电喷雾电离有关,因为其他大气压电离方法并未表现出这种行为。记录的液滴信号显示出对离子源和传输阶段参数的明显依赖性。由于空间电荷或复杂的非均相化学反应,大的高电荷液滴的存在可能会对仪器的分析性能产生不利影响或至少产生影响。此外,大的带电聚集体进入真空系统解释了在多极阶段后报告的表面污染。关键部件的这种污染导致维护工作大幅增加。