Department of Radiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China.
Department of Radiology, Shanghai Geriatric Medical Center, 2560 Chunshen Road, Minhang District, Shanghai, 201104, China.
Eur Radiol. 2024 Sep;34(9):5654-5665. doi: 10.1007/s00330-024-10650-6. Epub 2024 Feb 26.
To compare the diagnostic performance of machine learning (ML)-based computed tomography-derived fractional flow reserve (CT-FFR) and cardiac magnetic resonance (MR) perfusion mapping for functional assessment of coronary stenosis.
Between October 2020 and March 2022, consecutive participants with stable coronary artery disease (CAD) were prospectively enrolled and underwent coronary CTA, cardiac MR, and invasive fractional flow reserve (FFR) within 2 weeks. Cardiac MR perfusion analysis was quantified by stress myocardial blood flow (MBF) and myocardial perfusion reserve (MPR). Hemodynamically significant stenosis was defined as FFR ≤ 0.8 or > 90% stenosis on invasive coronary angiography (ICA). The diagnostic performance of CT-FFR, MBF, and MPR was compared, using invasive FFR as a reference.
The study protocol was completed in 110 participants (mean age, 62 years ± 8; 73 men), and hemodynamically significant stenosis was detected in 36 (33%). Among the quantitative perfusion indices, MPR had the largest area under receiver operating characteristic curve (AUC) (0.90) for identifying hemodynamically significant stenosis, which is in comparison with ML-based CT-FFR on the vessel level (AUC 0.89, p = 0.71), with comparable sensitivity (89% vs 79%, p = 0.20), specificity (87% vs 84%, p = 0.48), and accuracy (88% vs 83%, p = 0.24). However, MPR outperformed ML-based CT-FFR on the patient level (AUC 0.96 vs 0.86, p = 0.03), with improved specificity (95% vs 82%, p = 0.01) and accuracy (95% vs 81%, p < 0.01).
ML-based CT-FFR and quantitative cardiac MR showed comparable diagnostic performance in detecting vessel-specific hemodynamically significant stenosis, whereas quantitative perfusion mapping had a favorable performance in per-patient analysis.
ML-based CT-FFR and MPR derived from cardiac MR performed well in diagnosing vessel-specific hemodynamically significant stenosis, both of which showed no statistical discrepancy with each other.
• Both machine learning (ML)-based computed tomography-derived fractional flow reserve (CT-FFR) and quantitative perfusion cardiac MR performed well in the detection of hemodynamically significant stenosis. • Compared with stress myocardial blood flow (MBF) from quantitative perfusion cardiac MR, myocardial perfusion reserve (MPR) provided higher diagnostic performance for detecting hemodynamically significant coronary artery stenosis. • ML-based CT-FFR and MPR from quantitative cardiac MR perfusion yielded similar diagnostic performance in assessing vessel-specific hemodynamically significant stenosis, whereas MPR had a favorable performance in per-patient analysis.
比较基于机器学习(ML)的计算机断层扫描衍生的血流储备分数(CT-FFR)和心脏磁共振(MR)灌注成像在冠状动脉狭窄功能评估中的诊断性能。
2020 年 10 月至 2022 年 3 月,连续纳入稳定型冠状动脉疾病(CAD)患者,前瞻性入组,在 2 周内接受冠状动脉 CTA、心脏 MR 和有创性 FFR。心脏 MR 灌注分析通过应激心肌血流(MBF)和心肌灌注储备(MPR)进行定量。有创性 FFR ≤ 0.8 或 > 90%狭窄定义为血流动力学意义狭窄。以有创性 FFR 为参考,比较 CT-FFR、MBF 和 MPR 的诊断性能。
110 名参与者(平均年龄 62 岁±8 岁;73 名男性)完成了研究方案,其中 36 名(33%)存在血流动力学意义狭窄。在定量灌注指数中,MPR 对识别血流动力学意义狭窄的受试者工作特征曲线下面积(AUC)最大(0.90),与基于 ML 的血管水平 CT-FFR (AUC 0.89,p = 0.71)相当,敏感性相当(89%比 79%,p = 0.20),特异性(87%比 84%,p = 0.48),准确性(88%比 83%,p = 0.24)。然而,MPR 在患者水平的表现优于基于 ML 的 CT-FFR(AUC 0.96 比 0.86,p = 0.03),特异性(95%比 82%,p = 0.01)和准确性(95%比 81%,p < 0.01)均有改善。
基于 ML 的 CT-FFR 和心脏 MR 的定量分析在检测血管特异性血流动力学意义狭窄方面具有相当的诊断性能,而定量灌注成像在患者水平分析中具有更好的性能。
基于 ML 的 CT-FFR 和 MPR 在心导管检查中表现良好,在诊断血管特异性血流动力学意义狭窄方面均无统计学差异。
基于机器学习(ML)的计算机断层扫描衍生的血流储备分数(CT-FFR)和定量灌注心脏磁共振在检测血流动力学意义狭窄方面表现良好。
与定量灌注心脏磁共振的应激心肌血流(MBF)相比,心肌灌注储备(MPR)在检测血流动力学意义狭窄的冠状动脉狭窄方面具有更高的诊断性能。
基于 ML 的 CT-FFR 和定量心脏磁共振灌注的 MPR 在评估血管特异性血流动力学意义狭窄方面具有相似的诊断性能,而 MPR 在患者水平分析中具有更好的性能。