Plastic Surgery Hospital of Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100144, P. R. China.
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China.
Macromol Biosci. 2024 Jul;24(7):e2300557. doi: 10.1002/mabi.202300557. Epub 2024 Mar 29.
3D bioprinting of elastic cartilage tissues that are mechanically and structurally comparable to their native counterparts, while exhibiting favorable cellular behavior, is an unmet challenge. A practical solution for this problem is the multi-material bioprinting of thermoplastic polymers and cell-laden hydrogels using multiple nozzles. However, the processing of thermoplastic polymers requires high temperatures, which can damage hydrogel-encapsulated cells. In this study, the authors developed waterborne polyurethane (WPU)-polycaprolactone (PCL) composites to allow multi-material co-printing with cell-laden gelatin methacryloyl (GelMA) hydrogels. These composites can be extruded at low temperatures (50-60 °C) and high speeds, thereby reducing heat/shear damage to the printed hydrogel-capsulated cells. Furthermore, their hydrophilic nature improved the cell behavior in vitro. More importantly, the bioprinted structures exhibited good stiffness and viscoelasticity compared to native elastic cartilage. In summary, this study demonstrated low-temperature multi-material bioprinting of WPU-PCL-based constructs with good mechanical properties, degradation time-frames, and cell viability, showcasing their potential in elastic cartilage bio-fabrication and regeneration to serve broad biomedical applications in the future.
三维生物打印弹性软骨组织,使其在力学和结构上与天然组织相当,同时表现出良好的细胞行为,这是一个尚未满足的挑战。解决这个问题的一个实际方法是使用多个喷嘴对热塑性聚合物和细胞负载水凝胶进行多材料生物打印。然而,热塑性聚合物的加工需要高温,这可能会损坏水凝胶包封的细胞。在这项研究中,作者开发了水性聚氨酯(WPU)-聚己内酯(PCL)复合材料,以允许与细胞负载的明胶甲基丙烯酰(GelMA)水凝胶进行多材料共打印。这些复合材料可以在低温(50-60°C)和高速下挤出,从而减少对打印水凝胶包封细胞的热/剪切损伤。此外,其亲水性改善了细胞的体外行为。更重要的是,与天然弹性软骨相比,生物打印的结构表现出良好的弹性和粘弹性。总之,本研究展示了基于 WPU-PCL 的低温多材料生物打印构建体,具有良好的机械性能、降解时间和细胞活力,展示了它们在弹性软骨生物制造和再生方面的潜力,未来将在广泛的生物医学应用中发挥作用。