Suppr超能文献

用于与藻酸盐-明胶水凝胶混合 3D 生物打印的聚己内酯(PCL)支架的机械性能。

Mechanical properties of polycaprolactone (PCL) scaffolds for hybrid 3D-bioprinting with alginate-gelatin hydrogel.

机构信息

Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, D-79110, Freiburg, Germany; Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Koehler-Allee 105, D-79110, Freiburg, Germany.

Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, D-79110, Freiburg, Germany.

出版信息

J Mech Behav Biomed Mater. 2022 Jun;130:105219. doi: 10.1016/j.jmbbm.2022.105219. Epub 2022 Apr 6.

Abstract

The generation of artificial human tissue by 3D-bioprinting has expanded significantly as a clinically relevant research topic in recent years. However, to produce a complex and viable tissue, in-depth biological understanding and advanced printing techniques are required with a high number of process parameters. Here, we systematically evaluate the process parameters relevant for a hybrid bioprinting process based on fused-deposition modeling (FDM) of thermoplastic material and microextrusion of a cell-laden hydrogel. First, we investigated the effect of the printing temperature of polycaprolactone (PCL), on the junction strength between individual fused filaments and on the viability of immortalized mesenchymal stem cells (iMSC) in the surrounding alginate-gelatin-hydrogel. It was found that a printing temperature of 140 °C and bonds with an angle of 90° between the filaments provided a good compromise between bonding strength of the filaments and the viability of the surrounding cells. Using these process parameters obtained from individual fused filaments, we then printed cubic test structures with a volume of 10 × 10 × 10 mm with different designs of infill patterns. The variations in mechanical strength of these cubes were measured for scaffolds made of PCL-only as well as for hydrogel-filled PCL scaffolds printed by alternating hybrid bioprinting of PCL and hydrogel, layer by layer. The bare scaffolds showed a compressive modulus of up to 6 MPa, close to human hard tissue, that decreased to about 4 MPa when PCL was printed together with hydrogel. The scaffold design suited best for hybrid printing was incubated with cell-laden hydrogel and showed no degradation of its mechanical strength for up to 28 days.

摘要

近年来,3D 生物打印技术在人工组织方面的应用得到了显著扩展,成为了一个具有临床相关性的研究课题。然而,为了生成复杂且具有生命力的组织,需要深入的生物学理解和先进的打印技术,并涉及到大量的工艺参数。在这里,我们系统地评估了基于热塑性材料熔融沉积建模(FDM)和细胞负载水凝胶微挤出的混合生物打印工艺的相关工艺参数。首先,我们研究了聚己内酯(PCL)的打印温度对单个熔融纤维之间的结合强度以及周围藻酸盐-明胶水凝胶中永生化间充质干细胞(iMSC)活力的影响。结果发现,打印温度为 140°C 且纤维之间的夹角为 90°时,纤维的结合强度和周围细胞的活力之间达到了良好的平衡。使用从单个熔融纤维获得的这些工艺参数,我们使用不同填充图案设计,打印出了体积为 10×10×10mm 的立方测试结构。测量了这些立方体的机械强度变化,这些立方体由仅 PCL 制成,以及由交替混合生物打印的 PCL 和水凝胶逐层打印而成的水凝胶填充 PCL 支架制成。裸支架的压缩模量高达 6MPa,接近人体硬组织,当 PCL 与水凝胶一起打印时,压缩模量降低到约 4MPa。最适合混合打印的支架设计与细胞负载水凝胶孵育,其机械强度在 28 天内没有降解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验