Suppr超能文献

检测随机传染病模型传播率的变化。

Detecting changes in the transmission rate of a stochastic epidemic model.

机构信息

Department of Statistical Science, Duke University, Durham, North Carolina, USA.

出版信息

Stat Med. 2024 May 10;43(10):1867-1882. doi: 10.1002/sim.10050. Epub 2024 Feb 26.

Abstract

Throughout the course of an epidemic, the rate at which disease spreads varies with behavioral changes, the emergence of new disease variants, and the introduction of mitigation policies. Estimating such changes in transmission rates can help us better model and predict the dynamics of an epidemic, and provide insight into the efficacy of control and intervention strategies. We present a method for likelihood-based estimation of parameters in the stochastic susceptible-infected-removed model under a time-inhomogeneous transmission rate comprised of piecewise constant components. In doing so, our method simultaneously learns change points in the transmission rate via a Markov chain Monte Carlo algorithm. The method targets the exact model posterior in a difficult missing data setting given only partially observed case counts over time. We validate performance on simulated data before applying our approach to data from an Ebola outbreak in Western Africa and COVID-19 outbreak on a university campus.

摘要

在疫情传播过程中,疾病的传播速度会随着行为的改变、新疾病变体的出现和缓解政策的引入而变化。估计这种传播率的变化可以帮助我们更好地对疫情的动态进行建模和预测,并深入了解控制和干预策略的效果。我们提出了一种在由分段常数分量组成的时变传输率下,对随机易感-感染-移除模型中的参数进行似然估计的方法。在这样做的过程中,我们的方法通过马尔可夫链蒙特卡罗算法同时学习传输率中的变化点。该方法的目标是在仅观察到随时间变化的部分病例计数的困难缺失数据设置中,对精确的模型后验进行估计。我们在将该方法应用于西非埃博拉疫情和大学校园 COVID-19 疫情的数据之前,先在模拟数据上验证了性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验