Mitchell Andrew, Rutar Alex
School of Mathematics, University of Birmingham, Edgbaston, B15 2TT UK.
Mathematical Institute, University of St Andrews, St Andrews, KY16 9SS Scotland.
Commun Math Phys. 2024;405(3):63. doi: 10.1007/s00220-023-04895-3. Epub 2024 Feb 24.
We study regularity properties of frequency measures arising from random substitutions, which are a generalisation of (deterministic) substitutions where the substituted image of each letter is chosen independently from a fixed finite set. In particular, for a natural class of such measures, we derive a closed-form analytic formula for the -spectrum and prove that the multifractal formalism holds. This provides an interesting new class of measures satisfying the multifractal formalism. More generally, we establish results concerning the -spectrum of a broad class of frequency measures. We introduce a new notion called the - of a random substitution and show that this coincides with the -spectrum of the corresponding frequency measure for all . As an application, we obtain closed-form formulas under separation conditions and recover known results for topological and measure theoretic entropy.
我们研究由随机代换产生的频率测度的正则性性质,随机代换是(确定性)代换的一种推广,其中每个字母的代换图像是从一个固定的有限集独立选取的。特别地,对于这类测度的一个自然类,我们导出了(\alpha)-谱的一个封闭形式的解析公式,并证明了多重分形形式成立。这提供了一类满足多重分形形式的有趣的新测度。更一般地,我们建立了关于一大类频率测度的(\alpha)-谱的结果。我们引入了一个称为随机代换的(\alpha)-的新的概念,并表明对于所有的(\alpha),它与相应频率测度的(\alpha)-谱一致。作为一个应用,我们在分离条件下得到了封闭形式的公式,并恢复了关于拓扑熵和测度理论熵的已知结果。