Blackmore Denis, Balinsky Alexander A, Kycia Radoslaw, Prykarpatski Anatolij K
Department of Mathematical Sciences and CAMS, New Jersey Institute of Technology, Newark, NJ 07102, USA.
Mathematics Institute at the Cardiff University, Cardiff CF24 4AG, UK.
Entropy (Basel). 2021 Oct 26;23(11):1405. doi: 10.3390/e23111405.
We review some analytic, measure-theoretic and topological techniques for studying ergodicity and entropy of discrete dynamical systems, with a focus on Boole-type transformations and their generalizations. In particular, we present a new proof of the ergodicity of the 1-dimensional Boole map and prove that a certain 2-dimensional generalization is also ergodic. Moreover, we compute and demonstrate the equivalence of metric and topological entropies of the 1-dimensional Boole map employing "compactified"representations and well-known formulas. Several examples are included to illustrate the results. We also introduce new multidimensional Boole-type transformations invariant with respect to higher dimensional Lebesgue measures and investigate their ergodicity and metric and topological entropies.
我们回顾一些用于研究离散动力系统的遍历性和熵的解析、测度论及拓扑技术,重点关注布尔型变换及其推广。特别地,我们给出了一维布尔映射遍历性的新证明,并证明了某二维推广也是遍历的。此外,我们利用“紧致化”表示和著名公式计算并证明了一维布尔映射的度量熵和拓扑熵的等价性。包含几个例子来说明结果。我们还引入了关于高维勒贝格测度不变的新的多维布尔型变换,并研究它们的遍历性、度量熵和拓扑熵。