Suppr超能文献

多队列脑脊液蛋白质组学确定了无症状和有症状阿尔茨海默病的强大分子特征。

Multi-cohort cerebrospinal fluid proteomics identifies robust molecular signatures for asymptomatic and symptomatic Alzheimer's disease.

作者信息

Cruchaga Carlos, Ali Muhammad, Shen Yuanyuan, Do Anh, Wang Lihua, Western Daniel, Liu Menghan, Beric Aleksandra, Budde John, Gentsch Jen, Schindler Suzanne, Morris John, Holtzman David, Fernández Maria, Ruiz Agustín, Alvarez Ignacio, Aguilar Miquel, Pastor Pau, Rutledge Jarod, Oh Hamilton, Wilson Edward, Le Guen Yann, Khalid Rana, Robins Chloe, Pulford David, Ibanez Laura, Wyss-Coray Tony, Ju Sung Yun

机构信息

Washington University School of Medicine.

Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.

出版信息

Res Sq. 2024 Feb 16:rs.3.rs-3631708. doi: 10.21203/rs.3.rs-3631708/v1.

Abstract

Changes in Amyloid-β (A), hyperphosphorylated Tau (T) in brain and cerebrospinal fluid (CSF) precedes AD symptoms, making CSF proteome a potential avenue to understand the pathophysiology and facilitate reliable diagnostics and therapies. Using the AT framework and a three-stage study design (discovery, replication, and meta-analysis), we identified 2,173 proteins dysregulated in AD, that were further validated in a third totally independent cohort. Machine learning was implemented to create and validate highly accurate and replicable (AUC>0.90) models that predict AD biomarker positivity and clinical status. These models can also identify people that will convert to AD and those AD cases with faster progression. The associated proteins cluster in four different protein pseudo-trajectories groups spanning the AD continuum and were enrichment in specific pathways including neuronal death, apoptosis and tau phosphorylation (early stages), microglia dysregulation and endolysosomal dysfuncton(mid-stages), brain plasticity and longevity (mid-stages) and late microglia-neuron crosstalk (late stages).

摘要

大脑和脑脊液(CSF)中β淀粉样蛋白(A)、过度磷酸化 Tau 蛋白(T)的变化先于阿尔茨海默病(AD)症状出现,这使得脑脊液蛋白质组成为了解病理生理学以及促进可靠诊断和治疗的潜在途径。利用 AT 框架和三阶段研究设计(发现、重复验证和荟萃分析),我们鉴定出 2173 种在 AD 中失调的蛋白质,并在第三个完全独立的队列中进一步验证。实施机器学习以创建和验证高度准确且可重复(曲线下面积>0.90)的模型,这些模型可预测 AD 生物标志物阳性和临床状态。这些模型还可以识别将转变为 AD 的人群以及疾病进展更快的 AD 病例。相关蛋白质聚集在跨越 AD 连续体的四个不同蛋白质伪轨迹组中,并在特定途径中富集,包括神经元死亡、凋亡和 tau 蛋白磷酸化(早期阶段)、小胶质细胞失调和内溶酶体功能障碍(中期阶段)、大脑可塑性和长寿(中期阶段)以及晚期小胶质细胞 - 神经元串扰(晚期阶段)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c098/10896368/9de06ee3b49e/nihpp-rs3631708v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验