基于 EEG 的实时非侵入式扩散去极化的成像与检测:一种超轻量级可解释深度学习方法。

Real-Time Non-Invasive Imaging and Detection of Spreading Depolarizations through EEG: An Ultra-Light Explainable Deep Learning Approach.

出版信息

IEEE J Biomed Health Inform. 2024 Oct;28(10):5780-5791. doi: 10.1109/JBHI.2024.3370502. Epub 2024 Oct 3.

Abstract

A core aim of neurocritical care is to prevent secondary brain injury. Spreading depolarizations (SDs) have been identified as an important independent cause of secondary brain injury. SDs are usually detected using invasive electrocorticography recorded at high sampling frequency. Recent pilot studies suggest a possible utility of scalp electrodes generated electroencephalogram (EEG) for non-invasive SD detection. However, noise and attenuation of EEG signals makes this detection task extremely challenging. Previous methods focus on detecting temporal power change of EEG over a fixed high-density map of scalp electrodes, which is not always clinically feasible. Having a specialized spectrogram as an input to the automatic SD detection model, this study is the first to transform SD identification problem from a detection task on a 1-D time-series wave to a task on a sequential 2-D rendered imaging. This study presented a novel ultra-light-weight multi-modal deep-learning network to fuse EEG spectrogram imaging and temporal power vectors to enhance SD identification accuracy over each single electrode, allowing flexible EEG map and paving the way for SD detection on ultra-low-density EEG with variable electrode positioning. Our proposed model has an ultra-fast processing speed (<0.3 sec). Compared to the conventional methods (2 hours), this is a huge advancement towards early SD detection and to facilitate instant brain injury prognosis. Seeing SDs with a new dimension - frequency on spectrograms, we demonstrated that such additional dimension could improve SD detection accuracy, providing preliminary evidence to support the hypothesis that SDs may show implicit features over the frequency profile.

摘要

神经危重症护理的核心目标是预防继发性脑损伤。扩散性去极化(SD)已被确定为继发性脑损伤的一个重要独立原因。SD 通常使用高采样频率记录的侵袭性皮质脑电图(ECoG)进行检测。最近的初步研究表明,头皮电极生成的脑电图(EEG)在非侵入性 SD 检测中可能具有一定的实用性。然而,EEG 信号的噪声和衰减使得这一检测任务极具挑战性。以前的方法主要集中在检测头皮电极高密度图上的 EEG 时间功率变化,这在临床上并不总是可行的。本研究将专门的频谱图作为自动 SD 检测模型的输入,首次将 SD 识别问题从一维时间序列波上的检测任务转变为二维成像上的顺序任务。本研究提出了一种新颖的超轻量级多模态深度学习网络,将 EEG 频谱成像和时间功率向量融合在一起,以提高每个单个电极上的 SD 识别准确性,允许灵活的 EEG 图谱,并为具有可变电极定位的超低密度 EEG 上的 SD 检测铺平道路。我们提出的模型具有超快的处理速度(<0.3 秒)。与传统方法(2 小时)相比,这是朝着早期 SD 检测和即时脑损伤预后的巨大进步。通过频谱图上的新维度 - 频率来观察 SD,我们证明了这种附加维度可以提高 SD 检测准确性,为 SD 可能在频率分布上表现出隐含特征的假设提供初步证据支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索