Suppr超能文献

使用头皮脑电图对重度创伤性脑损伤中扩展性去极化进行无创且可靠的自动检测。

Noninvasive and reliable automated detection of spreading depolarization in severe traumatic brain injury using scalp EEG.

作者信息

Chamanzar Alireza, Elmer Jonathan, Shutter Lori, Hartings Jed, Grover Pulkit

机构信息

Electrical and Computer Engineering Department, Carnegie Mellon University, Pittsburgh, PA, USA.

Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA.

出版信息

Commun Med (Lond). 2023 Aug 19;3(1):113. doi: 10.1038/s43856-023-00344-3.

Abstract

BACKGROUND

Spreading depolarizations (SDs) are a biomarker and a potentially treatable mechanism of worsening brain injury after traumatic brain injury (TBI). Noninvasive detection of SDs could transform critical care for brain injury patients but has remained elusive. Current methods to detect SDs are based on invasive intracranial recordings with limited spatial coverage. In this study, we establish the feasibility of automated SD detection through noninvasive scalp electroencephalography (EEG) for patients with severe TBI.

METHODS

Building on our recent WAVEFRONT algorithm, we designed an automated SD detection method. This algorithm, with learnable parameters and improved velocity estimation, extracts and tracks propagating power depressions using low-density EEG. The dataset for testing our algorithm contains 700 total SDs in 12 severe TBI patients who underwent decompressive hemicraniectomy (DHC), labeled using ground-truth intracranial EEG recordings. We utilize simultaneously recorded, continuous, low-density (19 electrodes) scalp EEG signals, to quantify the detection accuracy of WAVEFRONT in terms of true positive rate (TPR), false positive rate (FPR), as well as the accuracy of estimating SD frequency.

RESULTS

WAVEFRONT achieves the best average validation accuracy using Delta band EEG: 74% TPR with less than 1.5% FPR. Further, preliminary evidence suggests WAVEFRONT can estimate how frequently SDs may occur.

CONCLUSIONS

We establish the feasibility, and quantify the performance, of noninvasive SD detection after severe TBI using an automated algorithm. The algorithm, WAVEFRONT, can also potentially be used for diagnosis, monitoring, and tailoring treatments for worsening brain injury. Extension of these results to patients with intact skulls requires further study.

摘要

背景

扩散性去极化(SDs)是一种生物标志物,也是创伤性脑损伤(TBI)后脑损伤恶化的一种潜在可治疗机制。SDs的无创检测可能会改变脑损伤患者的重症监护,但一直难以实现。目前检测SDs的方法基于有创颅内记录,空间覆盖范围有限。在本研究中,我们确定了通过无创头皮脑电图(EEG)对重度TBI患者进行自动SD检测的可行性。

方法

基于我们最近的WAVEFRONT算法,我们设计了一种自动SD检测方法。该算法具有可学习参数并改进了速度估计,使用低密度EEG提取并跟踪传播的功率下降。用于测试我们算法的数据集包含12例接受去骨瓣减压术(DHC)的重度TBI患者中的700个总SDs,使用颅内EEG真实记录进行标记。我们利用同时记录的连续低密度(19个电极)头皮EEG信号,从真阳性率(TPR)、假阳性率(FPR)以及估计SD频率的准确性方面来量化WAVEFRONT的检测准确性。

结果

WAVEFRONT使用δ波段EEG实现了最佳平均验证准确性:真阳性率为74%,假阳性率小于1.5%。此外,初步证据表明WAVEFRONT可以估计SDs可能发生的频率。

结论

我们确定了使用自动算法对重度TBI后进行无创SD检测的可行性,并量化了其性能。WAVEFRONT算法还可能用于脑损伤恶化的诊断、监测和个性化治疗。将这些结果扩展到颅骨完整的患者需要进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b9d/10439895/14709ec8a74d/43856_2023_344_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验