Suppr超能文献

三元共晶电解质辅助形成及固体电解质界面的动态呼吸效应用于高稳定性水系镁离子全电池

Ternary Eutectic Electrolyte-Assisted Formation and Dynamic Breathing Effect of the Solid-Electrolyte Interphase for High-Stability Aqueous Magnesium-Ion Full Batteries.

作者信息

Song Xinmei, Ge Yang, Xu Hao, Bao Songsong, Wang Lei, Xue Xiaolan, Yu Qianchuan, Xing Yizhi, Wu Zuoao, Xie Kefeng, Zhu Tangsong, Zhang Pengbo, Liu Yuzhu, Wang Zhangjian, Tie Zuoxiu, Ma Jing, Jin Zhong

机构信息

State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.

Jiangsu BTR Nano Technology Co., Ltd., 519 Jiangdong Avenue, Jintan District, Changzhou, Jiangsu 213200, P. R. China.

出版信息

J Am Chem Soc. 2024 Mar 13;146(10):7018-7028. doi: 10.1021/jacs.4c00227. Epub 2024 Feb 27.

Abstract

Aqueous rechargeable magnesium batteries hold immense potential for intrinsically safe, cost-effective, and sustainable energy storage. However, their viability is constrained by a narrow voltage range and suboptimal compatibility between the electrolyte and electrodes. Herein, we introduce an innovative ternary deep eutectic Mg-ion electrolyte composed of MgCl·6HO, acetamide, and urea in a precisely balanced 1:1:7 molar ratio. This formulation was optimized by leveraging competitive solvation effects between Mg ions and two organic components. The full batteries based on this ternary eutectic electrolyte, Mn-doped sodium vanadate (Mn-NVO) anode, and copper hexacyanoferrate cathode exhibited an elevated voltage plateau and high rate capability and showcased stable cycling performance. Ex-situ characterizations unveiled the Mg storage mechanism of Mn-NVO involving initial extraction of Na followed by subsequent Mg intercalation/deintercalation. Detailed spectroscopic analyses illuminated the formation of a pivotal solid-electrolyte interphase on the anode surface. Moreover, the solid-electrolyte interphase demonstrated a dynamic adsorption/desorption behavior, referred to as the "breathing effect", which substantially mitigated undesired dissolution and side reactions of electrode materials. These findings underscore the crucial role of rational electrolyte design in fostering the development of a favorable solid-electrolyte interphase that can significantly enhance compatibility between electrode materials and electrolytes, thus propelling advancements in aqueous multivalent-ion batteries.

摘要

水系可充电镁电池在本质安全、成本效益高和可持续储能方面具有巨大潜力。然而,它们的可行性受到狭窄的电压范围以及电解质与电极之间欠佳兼容性的限制。在此,我们引入了一种创新的三元深共晶镁离子电解质,它由MgCl₂·6H₂O、乙酰胺和尿素以精确平衡的1:1:7摩尔比组成。该配方通过利用镁离子与两种有机成分之间的竞争溶剂化效应进行了优化。基于这种三元共晶电解质、锰掺杂钒酸钠(Mn-NVO)阳极和铁氰化铜阴极的全电池表现出升高的电压平台和高倍率性能,并展示了稳定的循环性能。非原位表征揭示了Mn-NVO的镁存储机制,包括最初提取钠,随后进行镁的嵌入/脱嵌。详细的光谱分析阐明了阳极表面关键的固体电解质界面的形成。此外,固体电解质界面表现出一种动态吸附/解吸行为,称为“呼吸效应”,这大大减轻了电极材料不希望的溶解和副反应。这些发现强调了合理的电解质设计在促进形成有利的固体电解质界面方面的关键作用,这种界面可以显著增强电极材料与电解质之间的兼容性,从而推动水系多价离子电池的发展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验